
Matrix analysis - CSC6119 - CIE6002

AWEQEVR

Final Exam
May, 13th 2024

• Time Limit: 10:30 am - 12:30 pm.

• No books, course notes nor electronic devices are allowed.

• The problems are on the other side of the paper.

• Upon finished, the examination paper has to be submitted together with your answer book.
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Course check (40%)
1. Define what does it mean that two norms are equivalent. What happens in finite dimensional vector

spaces like Mn?

2. Give the definition of matrix norm and spectral radius, give their relation and prove it.

3. Given a matrix A with all entries strictly positive, what can be deduced on the eigenvalues of biggest
modulus and on their associated eigenspace? (Put together the 3 Perron Frobenius results).

4. Given A,B ∈ Hn, define the notation A � B and prove:

• Given any invertible matrix1 P ∈ Mp,n: P ∗AP � B =⇒ A � P−∗BP−1.
• A � B � 0 ⇐⇒ 0 ≺ A−1 � B−1.

5. Provide the definition of the tensor rank.

Problem 1 (25%): Normal matrices.
In this problem we will work with so called “normal matrices” that are matrices A ∈ Mn(C) satisfying:

A∗A = AA∗.

Let A = [aij ] ∈ Mn have eigenvalues λ1, . . . , λn (possibly equal, we do not assume here that A is diagonal-
izable). We are going to show that the following statements are equivalent:

(a) A is normal.

(b) A is unitarily diagonalizable (i.e. there exists U unitary such that U∗AU is diagonal).

(c)
∑n

i,j=1 |aij |2 =
∑n

i=1 |λi|2.

(d) A has n orthonormal eigenvectors.

Answer the following questions:

1. Show that (b) =⇒ (c).
Correction: If there is a unitary V such that A = V ΛV ∗ and Λ = diag(λ1, . . . , λn), then:

n∑
i,j=1

|aij |2 = tr(A∗A) = tr(Λ∗Λ) =

n∑
i=1

|λi|2.

2. Show that any diagonal matrix is normal. Show that any matrix unitarily similar to a normal matrix
is also normal.

3. Show that (d) =⇒ (a) Correction: Let us denote u1, . . . , un, the n orthonormal eigenvectors of
A respectively associated to the eigenvalues λ1, . . . , λn. The unitary matrix U = (u1, . . . , un) and
the diagonal matrix Λ = Diag(λ1, . . . , λn) then satisfies A = U∗ΛU . One can then conclude with
Item 2.

1Recall that P−∗ = (P ∗)∗.
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4. Let A ∈ Mn be partitioned as
A =

(
A11 A12

0 A22

)
,

in which A11 and A22 are square. Show that A is normal if and only if A11 and A22 are normal and
A12 = 0.
Correction: If A11 and A22 are normal and A12 = 0, then A = (A11 0

0 A22
) and of course:

AA∗ =

(
A11 0
0 A22

)(
A∗

11 0
0 A∗

22

)
=

(
A11A

∗
11 0

0 A22A
∗
22

)
=

(
A∗

11A11 0
0 A∗

22A22

)
= A∗A. (1)

Conversely, if A is normal, then(
A11A

∗
11 +A12A

∗
12 ∗

∗ ∗

)
= AA∗ = A∗A =

(
A∗

11A11 ∗
∗ ∗

)
so A∗

11A11 = A11A
∗
11 +A12A

∗
12 which implies that

tr(A∗
11A11) = tr(A11A

∗
11 +A12A

∗
12) = tr(A11A

∗
11) + tr(A12A

∗
12) = tr(A∗

11A11) + tr(A12A
∗
12)

and hence tr(A12A
∗
12) = 0. Since tr(A12A

∗
12) is the sum of squares of the absolute values of the entries

of A12, it follows that A12 = 0. Then A = (A11 0
0 A22

) and we saw in (1) that in that case A is normal
if and only if A11 and A22 are normal.

5. Show that (a) =⇒ (b). Correction: Consider the Schur triangularization A = UTU∗, in which
U = [u1 . . . un] is unitary and T = [tij ] is upper triangular. If A is normal, then so is T (see Item 2).
The preceding results ensures that T is actually a diagonal matrix, so A is unitarily diagonalizable.

6. Show that (c) =⇒ (d) Correction: With the same Schur triangularization A = UTU∗ as in
the previous solution, the diagonal entries of T are λ1, . . . , λn in some order, and hence tr(A∗A) =
tr(T ∗T ) =

∑n
i=1 |λi|2 +

∑
i<j |tij |2. Thus, (c) implies that

∑
i<j |tij |2 = 0, so T is diagonal. The

factorization A = UTU∗ is equivalent to the identity AU = UT , which says that Aui = λiui for each
i = 1, . . . , n. Thus, the n columns of U are orthonormal eigenvectors of A.

Problem 2 (25%): Sylvester equation.
Let us consider A,B,C ∈ Mn.

1. Given a matrix M ∈ Mm,n, define a vectorization procedure of M (Vec(M) ∈ Cpn). Vectorize the
equation AX+XB = C, X ∈ Mn and give the conidition for existence and uniqueness of the solution
X̂ ∈ Mn. Express Vec(X̂) with the Kronecker product of A and B. Correction: For a matrix
M = [c1, . . . , cn] ∈ Mm,n with columns cj ∈ Cm, j = 1, . . . , n, we define

Vec(M) :=


c1
c2
...
cn

 ∈ Cmn.

The vectorial form of the equation is GVec(X̂) = Vec(C) with G ≡ In⊗A+B⊗ In. The existence and
uniqueness of X̂ is a consequence of the invertibbility of G which happens if and only if A and −B do
not have common eigenvalue. In that case: Vec(X̂) = G−1Vec(C).

2. Show that Z : t 7→ etACetB is solution to the differential equation:
dZ

dt
= AZ + ZB

Z(0) = C
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Correction: As the solution to such differential equations exists and is unique, let us simply check
that:

dZ

dt
= AetACetB + etACBetB = AetACetB + etACetBB = AZ + ZB, (2)

since B and eB commute. Of course one also has Z(0) = e0ACe0B = C.

3. Given d ∈ N and λ ∈ C let us denote Jd(λ) the Jordan block defined as:

Jd(λ) =


λ 1 (0)

. . . . . .
. . . 1

(0) λ

 ∈ Md,

express etJd(λ). Correction: etJd(λ) = etλ


1 t td−1

(d−1)!

. . . . . .
. . . t

(0) 1


4. Deduce that when A and B only have strictly negative eigenvalues, X̂ = −

∫∞
0

etACetBdt (we assume
that this integral is well defined). Correction: Integrating (2), we know that:

Z(0)− lim
t→∞

Z(t) = A

(
−
∫ ∞

0

etACetBdt

)
+

(
−
∫ ∞

0

etACetBdt

)
B. (3)

Recalling that Z(0) = C, we are simply left to show that limt→∞ Z(t) = 0. Let us then introduce
A = P−1JAP and B = Q−1JBQ, the Jordan decomposition of A and B, where P,Q ∈ Mn are
invertible matrices and JA, JB ∈ Mn are block diagonal matrices with Jordan blocks on the diagonal.
We see directly from Item 3 that if λ < 0, then:

lim
t→∞

etJd(λ) = lim
t→∞

etλ


1 t td−1

(d−1)!

. . . . . .
. . . t

(0) 1

 = 0.

The same way, since JA, JB diagonal entries are strictly negative (they are the eigenvalues of A,B):

lim
t→∞

etA = lim
t→∞

P−1etJd(λ)P = 0 and lim
t→∞

etB = 0.

Finally one has the identity:

lim
t→∞

Z(t) = lim
t→∞

etACetB = 0,

which allows us to conclude thanks to (3).

5. Show that if A is Hermitian, then eA is also Hermitian. Show that if A is positive semi-definite then eA

is also positive semi definite. Correction: It is a clear consequence of the definition of the exponential:

eA =

∞∑
k=0

Ak

k!
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6. Show that if B = A∗ and −C is Hermitian positive semi-definite then X is also positive semidefinite.
Correction: We already saw in the course that if B = A∗ and C Hermitian, then X̂ is also Hermitian.
If moreover C is positive semidefinite, then for all u ∈ Cn:

u∗X̂u = −
∫ ∞

0

u∗etACetA
∗
udt ≥ 0.

Problem 3 (10%): Schur complement.
1. Let us consider a matrix A11 ∈ Mn, A12 ∈ Mn,p, A12 ∈ Mp,n and A22 ∈ Mp,p. Assuming that A11

is invertible, compute the product(
I 0

−A21A
−1
11 I

)(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
,

and deduce that A = (A11 A12

A21 A22
) is invertible if and only if its so called “Schur complement” S =

A22 −A21A
−1
11 A12 is invertible.

Correction: A simple computation gives us:(
I 0

−A21A
−1
11 I

)(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
,=

(
A11 0
0 A22 −A21A

−1
11 A12

)

2. Given X ∈ Mp,q let us introduce

K =

[
Ip X
X∗ Iq

]
∈ Mp+q.

Show that K is positive definite if and only if X is a strict contraction (its singular values are all
strictly lower than 1).
Correction: We see from the Schur identity that K is positive definite iif Iq − X∗X � 0 which is
again equivalent to Iq � X∗X and Iq ≥ σ1(X

∗X), where σ1 is the biggest singular value of X.

3. Given two positive semidefinite matrices A,B ∈ Mn, show that the three following properties are
equivalent:

(a) A � B

(b) ρ(A−1B) ≤ 1

(c) There exists a contraction X ∈ Mn such that B = A
1
2XA

1
2 .

Correction: Assume (a), then In � A− 1
2BA− 1

2 and 1 ≥ σ1(A
− 1

2BA− 1
2 ) which implies (C) with

X ≡ A− 1
2BA− 1

2 . Besides note that since B,A are Hermitian:
σ1(A

− 1
2BA− 1

2 ) = λmax(A
− 1

2BA− 1
2 ) = λmax(A

−1B),

which provides (b) – it is actually an equivalence. Now if we assume (c):

A−1B = A−1A
1
2XA

1
2 = A− 1

2XA
1
2 ,

which means that A−1B is similar to a contraction, therefore σ1(A
−1B) ≤ 1 and one can deduce

(a).

4. Let H = ( A B
B∗ C ) ∈ Mp+q be Hermitian with A ∈ Mp and C ∈ Mq. Show the equivalence:

(a) H is positive definite.
(b) A is positive definite and C −B∗A−1B is positive definite.
(c) A and C are positive definite and ρ(B∗A−1BC−1) < 1.

Correction: Simple consequence of the previous results.
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