
Lecture 1

Matrix analysis: general notions

1 Notations
• N: set of positive integers: N = {0, 1, 2, . . .}. Below we consider n, p,m ∈ N.

• [n]: [n] = {1, . . . , n}.

• Sn: the symmetric group: the set of permutations of elements of [n] (i.e. the set of all the bijections
from [n] to [n], there are n! permutation in total). When we want the symmetric group to act on a
given finite set I different from [n], one can note SI the set of permutation of this set. Note that
Sn = S[n].

• Sgn(σ): Signature of a permutation σ ∈ Sn; it is equal to +1 if the permutation σ can be obtained
with an even number of transpositions (exchanges of two elements) otherwise, it is equal to −1.

• Given two sequences (an)n∈N, (bn)n∈N ∈ RN
+, we write an = O(bn) if there exists a constant C > 0 and

an integer n0 such that whenever n ≥ n0 we have:

an ≤ Cbn.

• R : Real valued space.

• C: Complex-valued space.

• K: Either R or C.

• δx,y: for x, y ∈ C, δx,y =

{
0, x 6= y,

1, x = y,
.

• Rn (resp. Cn): n-dimensional real (resp. complex) space.

• Mp,n (resp. Mp,n(R)): Set of p × n complex (resp. real) matrices, Mp =Mp,p. Some authors use
the notations Cp×n and Rp×n that it are useful to know. We note 0 the null matrix of Mp,n.

• Any element x ∈ Rn (or x ∈ Cn) is identified with a column matrix of M1,n (one calls that column
vector). There are no “row vectors”. We note x1, . . . , xn its entries:

x =

x1

...
xn

 .
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• Let In ∈Mn be the identity matrix:

In =

 1 (0)
. . .

(0) 1

 .

• Given i ∈ [n], let us note ei the i-th column of In, i.e., In = [e1, . . . , en]. The dimension n of each
(ei)i∈[n] is not specified in the notation, it can be deduced from the context.

• Given a matrix A ∈ Mp,n, we note (Ai,j)i∈[p],j∈[n] ∈ Cp its entries, A·1, . . . , A·n ∈ Mp,1(C) (or
a1, . . . , an ∈ Cp) its columns and A1·, . . . , Ap· ∈M1,n(C) its rows:

A =

A1,1 · · · A1,n

...
...

Ap,1 · · · Ap,n

 =
(
A·1, . . . , A·n

)
=
(
a1 · · · an

)
=

A1·
...

Ap·

 .

• The transpose and the hermitian transpose of A ∈Mp,n are respectively noted:

AT =

A1,1 · · · Ap,1

...
...

A1,n · · · Ap,n

 ∈Mn,p and A∗ =

Ā1,1 · · · Āp,1

...
...

Ā1,n · · · Āp,n

 ∈Mn,p,

where for any z ∈ C, z̄ ≡ <(z)−=(z)i is the complex conjugate of z.

• Matrix Product: Given matrices A ∈Mp,m and B ∈Mm,n, the matrix product AB is defined as a
matrix C ∈Mp,n with entries:

Ci,j =

m∑
k=1

Ai,kBk,j .

Note the simple expressions, for any i ∈ [p] and j ∈ [n]:

C =

m∑
k=1

A·kBk·, C·j = AB·j , and Ci· = Ai·B,

• Given i ∈ [p], j ∈ [n]: Ei,j ≡ eie
T
j = [ 0, . . . , 0︸ ︷︷ ︸

j−1 columns

, ei, 0, . . . , 0︸ ︷︷ ︸
n−j columns

] ∈ Mp,n. The dimension p × n of each

(Ei,j)i∈[p],j∈[n] is not specified in the notation, it can be deduced from the context.

• The trace of a square matrix A, denoted by Tr(A), is the sum of its diagonal elements:

Tr(A) =

n∑
i=1

Ai,i.

2 Definitions
• Vector Space: Given a scalar field K, a set V endowed with a sum and a scalar product with elements

of K is said to be a vector space iif the following properties are satisfied:

1. Stable through Addition: For any two vectors x and y in V , the sum x+ y is also in V .
2. Stable through Scalar Multiplication: For any scalar α ∈ K and vector x in V , the product

αx is also in V .
3. Zero Vector: There exists a zero vector 0 in V such that x+ 0 = x for any vector x in V .

2



Matrix analysis - CSC6119

4. Additive Inverse: For every vector x in V , there exists an additive inverse −x such that
x+ (−x) = 0.

• Linear Combination: Let x1, x2, . . . , xn be n vectors of a vector space V . A linear combination of
these vectors is an expression of the form:

y = c1x1 + c2x2 + . . .+ cnxn,

where c1, c2, . . . , cn are scalars. By definition of a vector space, y ∈ V .

• Subspace of a Space Let V be a vector space. A subset U of V is called a subspace of V if it is itself
a vector space with respect to the vector space operations of V .

• Sum of subspaces: Given two subspaces F,G, the sum F +G is the subspace:

F +G = {x+ y, x ∈ F, y ∈ G} .

If for any x ∈ F, y ∈ G x+ y = 0⇒ x = y = 0, the sum is said to be “direct”, and one usually denote
F ⊕G instead of F +G.

• Span of Vectors: The span of a set of vectors {v1, v2, . . . , vn}, denoted by Span(v1, v2, . . . , vn), is the
set of all possible linear combinations of these vectors. If one work with the scalar field K, one will
also use the notation:

Span(v1, v2, . . . , vn) = Kv1 + · · ·+Kvn

• Generative Families of Vectors: A family of vectors {v1, v2, . . . , vn} is said to be a generative
family if the span of this family is the entire vector space.

• Linearly Independent: A set of vectors {v1, v2, . . . , vn} is said to be linearly independent if the only
solution to the equation c1v1 + c2v2 + . . .+ cnvn = 0 is the trivial solution c1 = c2 = . . . = cn = 0.

• Orthogonal family: A set of vectors {v1, v2, . . . , vn} is said to be orthogonal if each pair of distinct
vectors is orthogonal, i.e., v∗i vj = 0 for all i 6= j.

• Basis: A basis of a vector space V is a linearly independent generative family of vectors. In other
words, a set of vectors {v1, v2, . . . , vn} is a basis for V if it spans V and is linearly independent.

• Dimension of a Subspace: The dimension of a subspace U , denoted by dim(U), is the maximum
number of linearly independent vectors in U . It is also the number of vectors in any basis for U (see
Subsection 3.1, Item 3).

• Norm: Let V be a vector space over the field of real or complex numbers. A norm on V is a function
‖ · ‖ : V → R satisfying the following properties for all vectors u, v ∈ V and all scalars α ∈ R or C:

1. Non-negativity: ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0 (the zero vector).
2. Scalar Multiplication: ‖αu‖ = |α|‖u‖.
3. Triangle Inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

A vector space equipped with a norm is called a normed vector space. Euclidean Norm:

The Euclidean norm (or 2-norm) of a vector v =


v1
v2
...
vn

 in Cn, denoted as ‖v‖ or ‖v‖2, is defined as:

‖v‖ =
√
|v1|2 + |v2|2 + . . .+ |vn|2 =

√
v∗v.
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Given p > 0, the ‖ · ‖p norm is defined as:

‖v‖p = (|v1|p + |v2|p + . . .+ |vn|p)
1
p .

The ‖ · ‖∞ norm is defined as:

‖v‖∞ = max (v1, v2, . . . , vn) .

• Orthogonal Complement: For a subspace S ⊆ Rm the Orthogonal Complement is the subspace of
Rn defined as:

S⊥ = {y ∈ Rm : <(y∗x) = 0, ∀x ∈ S}.

• Orthonormal Basis: A basis {v1, v2, . . . , vn} of a vector space V is called an orthonormal basis if it
is orthogonal and each of its vectors is of unit length, i.e., ‖vi‖ = 1 for all i.

• Coordinates of a vector in a basis and representation of a matrix in a basis:
Let v be a vector in a vector space V , and let B = {v1, v2, . . . , vn} be a basis for V . The coordinates
of v in the basis B, denoted as [v]B, are the unique scalars c1, c2, . . . , cn such that:

v = c1v1 + c2v2 + . . .+ cnvn.

The vector v can be represented as a column vector in terms of its coordinates in the basis B:

[v]B =


c1
c2
...
cn

 .

Given a matrix A =∈Mp,n, the representation of A in B is defined as:

[A]B ≡ ([Av1]B, . . . , [Avn]B) .

• Elementary matrices: We consider below i, j ∈ [n] such that i 6= j and λ ∈ K:

1. Row/column Swap Matrix

Pij := [e1, . . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1, . . . , en] ∈Mn.

2. Row/column Scaling Matrix

Mi(λ) := [e1, . . . , ei−1, λei, ei+1, . . . , en] ∈Mn.

3. Row/column Addition Matrix

Gij(λ) := In + λEij = [e1, . . . , ei−1, ei + λej , ei+1, . . . , en] ∈Mn.

• Image of a Matrix (or Range Space): For a matrix A, the image, or range space, denoted by
Im(A), is the set of all possible linear combinations of the columns of A.

• Rank of a Matrix: The rank of a matrix A, denoted by Rk(A), is the maximum number of linearly
independent columns (or rows) in A. It is equal to the dimension of the column space (or row space)
of A.

• Kernel (or Null Space): The kernel, or null space, of a matrix A, denoted by ker(A), is the set of
all vectors x such that Ax = 0.

• Invertible Matrix: A matrix A ∈Mn is said to be invertible or non-singular if there exists an inverse
matrix A−1 such that AA−1 = A−1A = In.
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• Singular Matrix: A square matrix A is said to be singular if it is not invertible. In other words, A
is singular if there exists no inverse matrix A−1 such that AA−1 = A−1A = I, where I is the identity
matrix.

• Injective/Surjective Matrix: A rectangular matrix A ∈Mp,n(K) is said to be injective if Ker(A) =
{0}. It is said to be surjective if Im(A) = Kn.

• Eigenvalue and Eigenvector: Given A ∈Mn, a scalar λ is called an eigenvalue of A if there exists
a non-zero vector v, called an eigenvector, such that:

Av = λv.

The eigenspace Eλ associated to λ is the set of eigenvectors associated to lambda, it is exactly:

Eλ = Ker(A− λIn).

• Spectrum, spectral radius: The set of all λ ∈ C that are eigenvalues of A ∈ Mn is called the
spectrum of A and is denoted by Sp(A). If not specified, Sp(A) is the set of complex eigenvalues of A
(that is always non-empty unlike the set of real eigenvalues, see Subsection 3.8, Item 3). The spectral
radius of A is the nonnegative real number ρ(A) = max{|X| : Sp(A)}. This is just the radius of the
smallest disc centered at the origin in the complex plane that includes all the eigenvalues of A.

• Triangular Matrix: A square matrix T is said to be upper triangular if all its entries below the main
diagonal are zero, i.e., Tij = 0 for i > j. Similarly, T is said to be lower triangular if all its entries
above the main diagonal are zero, i.e., Tij = 0 for i < j.

• Change of Basis Matrices:
Let B = {w1, w2, . . . , wn} be a base for the vector space V n. The change of basis1 to B is performed
thanks to a “change of basis matrix” P defined by:

P = (w1, w2, . . . , wn) ,

It is invertible thanks to Subsection 3.5. Actually any invertible matrix can be associated to a basis
and therefore be seen as a change of basis matrix.

• Similarity Between Matrices: Two square matrices A and B are said to be similar if there exists
an invertible matrix P such that:

B = P−1AP.

We will see in Subsection 3.5, Item 12 that B is actually the representation of A in the basis composed
of the columns of P .

• Diagonalizable Matrix: A square matrix A is said to be diagonalizable if it is similar to a diagonal
matrix (i.e., if there exists an invertible matrix P such that P−1AP is a diagonal matrix or equivalently
if there exists a basis B such that [A]B is diagonalizable).

• Triangularizable Matrices: A square matrix A is said to be triangularizable if it is similar to
an upper triangular matrix (i.e. there exists an invertible matrix P such that P−1AP is an upper
triangular matrix or equivalently there exists a basis B such that [A]B is triangular).

• Orthogonal, unitary Matrices: A square matrix Q ∈ Mn is called orthogonal if its transpose
is equal to its inverse, i.e., QTQ = QQT = In, where In is the identity matrix. A square matrix
U ∈Mn(C) is called unitary if its conjugate transpose U∗ is equal to its inverse.

• Symmetric, Hermitian Matrices: A matrix P ∈ Mn is called symmetric it it is equal to its
transpose (PT = P ). For complex matrices, a square matrix H ∈ Mn(C) is called Hermitian if its
conjugate transpose (adjoint) is equal to itself, i.e., H∗ = H. Be careful, the two notions are not
equivalent for complex matrices (iIn is symmetric bit not hermitian).

1We will later see in Subsection 3.5, Item 12 that given a matrix A ∈ Mn, [A]B = P−1AP .
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• Positive Semidefinite Matrices: A symmetric matrix P is said to be positive semidefinite if for
any vector x 6= 0, the quadratic form xTPx ≥ 0. In the case of Hermitian matrices H, the condition
is x∗Hx ≥ 0.

• Nilpotent Matrices: A matrix A ∈ Mn is said to be nilpotent if there exists an integer r ≥ 0 such
that Ar = 0.

• Determinant of a Matrix: Given A ∈ Mn, we note det(A) or |A|, the determinant if A defined
below with the Signature formula of Leibniz:

det(A) =
∑

σ∈Sn

Sgn(σ)A1,σ(1) · · ·An,σ(n)

• Minors: The (i, j) minor of A will be noted |A−i,j |,and is defined as the determinant of the matrix
obtained by deleting the ith row and jth column of A:

A−i,j ≡



A1,1 · · · A1,j−1 A1,j+1 · · · A1,n

...
...

...
...

Ai−1,1 · · · Ai−1,j−1 Ai−1,j+1 · · · Ai−1,n

Ai+1,1 · · · Ai+1,j−1 Ai+1,j+1 · · · Ai+1,n

...
...

...
...

Ap,1 · · · Ap,j−1 Ap,j+1 · · · Ap,n


• Cofactor matrix or Comatrix: Given a matrix A ∈Mn let us introduce for all i, j ∈ [n] the scalar

Ci,j = (−1)i+j |A−i,j |, where |A−i,j | is the (i, j) minor of A, then the matrix Com(A) ≡ (Ci,j)i,j∈[n] is
called the comatrix of A.

• Monomial polynomial: A monomial P is a polynomial of K[X] that lets only appear one exponent
of X, P writes aXk for some a ∈ K, k ∈ N.

• Degree of a polinomial: The degree of a polynomial P denoted “degP” is the highest exponent of
the monomials appearing in the expression of P .

• Monic polinomial: A monic polynomial is a non-zero univariate polynomial (that is, a polynomial
in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is 1.

• Elementary polynomial: An elementary polynomial is a polynomial of degree 1 that writes a1X+a0,
for two scalars a0, a1, a1 6= 0.

• Polynomial of matrices: A polynomial P = anX
n + · · · + a1X + a0 ∈ C[X] applied on a matrix

A ∈Mn is the matrix:

P (A) = anA
n + · · ·+ a1A+ a0In ∈Mn.

• Characteristic Polynomial of a Matrix: The characteristic polynomial of A ∈Mn is the polyno-
mial χA given by2:

χA(X) ≡ det(XIn −A) ∈ C[X],

if A ∈Mn(R), χA(X) ∈ R[X].

• Minimal annihilating polynomial: Noting K = C or K = R, the nonzero monic polynomial in
K[X] which annihilate A and has least degree is called the minimal annihilating polynomial of A in
K[X].

• Eigenvalue multiplicity: Given a matrix A having an eigenvalue λ, the dimension of the eigenspace
Eλ associated to λ is classically called the “geometric multiplicity” of λ and must be compared with the
“algebraic multiplicity” of λ which is the number of times the factor X−λ appears in the characteristic
polynomial χA of A.

2Some authors rather define the characteristic polynomial as χA(X) ≡ det(A−XIn), but we prefer our choice that produces
monic polynomial.

6



Matrix analysis - CSC6119

3 General properties.
3.1 Basis, dimension
In what follows, V designates a K-vector space.

1. AM Given k + 1 vectors w, v1, . . . , vk ∈ V , if w =
∑k

i=1 λivi and λi 6= 0, then Span(w, v2, . . . vk) =
Span(v1, v2, . . . vk). Proof: One already knows that Span(w, v2, . . . vk) ⊂ Span(v1, v2, . . . vk) since w is
a linear combination of v1, . . . , vk, besides v1 = 1

λ1
(w−

∑k
i=2 λivi) is a linear combination of w, v2, . . . vk

which concludes the proof.

2. Let W = {w1, . . . , wn} and U = {u1, . . . , um} be finite subsets of a vector space, and let w1, . . . , wn

be linearly independent. If W ⊆ Span{u1, . . . , um}, then n ≤ m, and n elements of U , if numbered
appropriately, can be exchanged with n elements of W such that

Span{w1, . . . , wn, un+1, . . . , um} = Span{u1, . . . , un, un+1, . . . , um}.

In other words free families of vectors spaces have always less elements than generative families.
Proof: By assumption, w1 can be expressed as a linear combination of {u1, . . . , um} with non-zero
coefficients. Without loss of generality, after renumbering if necessary, we assume the coefficient of u1

in this linear combination is non-zero. By Item 1, this gives us

Span{w1, u2, . . . , um} = Span{u1, u2, . . . , um}.

Continuing this process, we assume that we have exchanged vectors u1, . . . , ur with w1, . . . , wr such
that

Span{w1, . . . , wr, ur+1, . . . , um} = Span{u1, . . . , um}.

By assumption we have wr+1 ∈ span{u1, . . . , um}, and thus

wr+1 =

r∑
i=1

λiwi +

m∑
i=r+1

λiui

for some scalars λ1, . . . , λm. One of the scalars λr+1, . . . , λm must be nonzero (otherwise wr+1 would
be in span{w1, . . . , wr}, which contradicts the linear independence of w1, . . . , wm). After an appropriate
renumbering, we have λr+1 6= 0, and Item 1 yields:

Span{w1, . . . , wr+1, ur+2, . . . , um} = Span{u1, . . . , um},

Extending this to r = n− 1, we have

Span{w1, . . . , wn, un+1, . . . , um} = Span{u1, . . . , um},

which implies that n ≤ m.

3. A All the basis of V have the same number of elements. Together with Item 2, one deduces that in
a space of dimension n, free families have n or less than n elements and generative families have n or
more than n elements. In particular, the dimension of Kn is well defined and equal to n ({e1, . . . , en}
is a basis of Kn). Proof: Let us assume that we are given two basis {v1, . . . , vk}, {w1, . . . , wn} ⊂ V .
Since both families are free and generative, Item 2 allows us to set that n ≤ k and k ≤ n which implies
n = k. It is straight forward to show that e1, . . . , en is linearly independent and generative in Kn,
therefore dim(Kn) = n.

4. AM Given n linearly independent vectors {v1, . . . , vn} in a vector space V , if V \ Span(v1, . . . , vn) 6= ∅
then ∀w ∈ V \ Span(v1, . . . , vn), {v1, . . . , vn, w} is free. Proof: Considering w ∈ V \ Span{v1, . . . , vn},
one could show that v1, . . . , vn, w are also linearly independent. Indeed if there exist α1, . . . , αn+1, such
that α1v1 + · · ·+ αn+1w = 0, then:
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(a) if αn+1 6= 0 , w = −1
αn+1

(α1v1 + · · ·+ αnvn) ∈ Span(v1, . . . , vn) which contradicts our hypothesis.
(b) if αn+1 = 0 then α1v1 + · · ·+αnvn = 0 and therefore α1 = · · · = αn = 0 by freeness of v1, . . . , vn.

That proves that {v1, . . . , vn, w} is free.

5. A We assume here that dim(V ) = n. A family of n vectors B = (v1, . . . , vn) is free iif it is a basis. A
family of n vectors B = (v1, . . . , vn) is generative iif it is a basis.
Proof:

(a) Let us assume that B is free, if V is different from Span(B) ⊂ V , then considering vn+1 ∈
V \ Span(B), we know from Item 4 that (v1, . . . , vn, vn+1) is free, which contradicts Item 3.

(b) Let us assume that B is generative. If we assume that there exist some coefficient α1, . . . , αn ∈ R
such that α1v1 + · · ·αnvn = 0 and a certain i ∈ [n] such that αi 6= 0. Then vi =

1
αi
(
∑

j=0
j ̸=i

αjvj) ∈
Span(v1, . . . , vi−1, vi+1, . . . , vn), that would implies that (v1, . . . , vi−1, vi+1, . . . , vn) is generative
which contradicts again Item 3

6. AM Basis extension Theorem. Any set {v1, . . . , vk} ⊂ V of k ≤ n linearly independent vectors
can be extended to a basis of V . Proof: Iteratively for l ∈ {k + 1, . . . , n}, one can consider vl ∈
Kn\Span(v1, . . . , vl−1), then if v1, . . . , vl−1 are linearly independent, we know from Item 4 that v1, . . . , vl
are also linearly independent. We continue the process until l = n.

7. AM Given two subspace V, U , if V ⊂ U and dim(U) = dim(V ) then U = V . Proof: Any basis B of
V is a free family of U of dim(U) elements, therefore Item 5 allows us to set that it is a basis of U ,
which means U ⊂ Span(B) = V .

8. A Given two subspace in V, U , let us denote BU = (u1, . . . , udim(U) and BV = (v1, . . . , vdim(V )), respec-
tively, a basis of U and V . If U and V are in direct sum then B′ = (u1, . . . , udim(U), v1, . . . , vdim(V )) is a
basis of U ⊕V (and dim(U)+dim(V ) = dim(U +V )). Conversely, if dim(U)+dim(V ) = dim(U +V ),
then U and V are in direct sum. This property generalises to k subspaces U1, . . . , Uk.
Proof:

(a) Let us assume that U and V are in directt sum. We already know that B′ is generative U+V , let us
then show that it is free. Assuming that there exists some coeffincients α1, . . . , αdim(U), β1, . . . , βdim(V ) ∈
R such that:

α1u1 + · · ·+ αdim(U)udim(U) + β1v1 + · · ·+ βdim(V )vdim(V ) = 0

The fact that U and V are in direct sum then allows us to deduce that:

α1u1 + · · ·+ αdim(U)udim(U) = 0

β1v1 + · · ·+ βdim(V )vdim(V ) = 0,

which implies that:

α1 = · · · = αdim(U) = 0 and β1 = · · · = βdim(V ) = 0,

which finally allows us to conclude that B′ is free, and therefore a basis of U + V .
(b) Let us assume that dim(U + V ) = dim(U) + dim(V ). Then B′ is generative of U + V and has

dim(U) + dim(V ) = dim(U + V ) elements, that allows us to conclude that it is a basis of U + V
thanks to Item 5. Now, given x ∈ U and v ∈ V such that x+y = 0, expressing x and y as a linear
combination of elements of, respectively BU and BV , allows us to express the sum x+ y = 0 as a
linear combination of elements of B′ finally allowing us to show that x = y = 0 by freeness of B′
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9. A Given two subspaces U, V :

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V )

10. A Two subspaces U, V are in direct sum if and only if U ∩ V = {0}. Proof: Consequence of Items 8
and 9.

11. AM Gram-Schmidt. Given a basis {x1, . . . , xn} of Rn, there exists an orthonormal basis {z1, . . . , zn}
such that for all k ∈ [n], zk ∈ Span(x1, . . . , xk). In particular if one introduces the matrix X =
(x1, . . . , xn) and Z = (z1, . . . , zn), there exists an upper triangular matrix T such that:

Z = XT.

Proof: Define y1 ≡ x1 and choose
z1 =

y1√
〈y1, y1〉

to normalize z1. Define y2 = x2 − 〈x2, z1〉z1 to ensure y2 is orthogonal to z1, and choose

z2 =
y2√
〈y2, y2〉

so that z2 is normalized and orthogonal to z1. Continue similarly. After determining z1, . . . , zk−1, let

yk = xk − 〈xk, zk−1〉zk−1 − . . .− 〈xk, z1〉z1,

so that yk is orthogonal to z1, . . . , zk−1, and again normalize yk to obtain zk.

zk =
yk√
〈yk, yk〉

Continue until all the desired orthonormal vectors z1, . . . , zn have been produced.

12. AM Dimension Theorem (Rank-Nullity Theorem): Given A ∈Mn(K):

dim(Im(A)) + dim(Ker(A)) = n.

Proof: With Subsection 3.1, Item 6 (basis extension Theorem): take (v1, . . . , vp) a base of kerA ⊆ Kn.
Now completing it in a base (v1, . . . , vp, vp+1, . . . , vn) of Kn, one can express:

A(Kn) = A(Kv1) +A(Kv2) + · · ·+A(Kvp) +A(Kvp+1) + · · ·+A(Kvn)

= KAvp+1 + · · ·+KAvn.

Let us then show that Avp+1, . . . , Avn is free. It we assume that there exist αp+1, . . . , αn such that
αp+1Avp+1+· · ·+αnAvn = 0, then it means that αp+1vp+1+· · ·+αnvn ∈ ker(A)∩Span(vp+1, . . . , vn) =
{0}, which then implies αp+1 = · · · = αn = 0. Finally, Item 7 allows us to set:

dim(KerA) + dim(ImA) = p+ (n− (p+ 1) + 1) = n = dim(Kn).

3.2 Orthogonal complement
Let S ⊆ Km be a subspace of Kn:

1. A S ∩ S⊥ = {0}. Proof: Given X ∈ S ∩ S⊥, ‖x‖2 = x∗x = 0 thus x = 0.

2. AM Kn = S ⊕S⊥ (direct sum) and therefore dim(S) + dim(S⊥) = n, thanks to Subsection 3.1 Item 8.
Proof: It is a consequence of Gramm-Schmidt (Subsection 3.1, Item 11), we consider an orthonormal
basis of S and we extend it to get an orthonormal basis of Kn, then it is straightforward to see that all
the added vectors belong to S⊥ and S ⊕ S⊥ = Kn.

9
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3. AM (S⊥)⊥ = S. Proof: Given x ∈ S, for all y ∈ S⊥, x∗y = 0, therefore x ∈ (S⊥)⊥ and S ⊂ (S⊥)⊥.
Now since we know from Item 2 that S ⊕ S⊥ = S⊥ ⊕ (S⊥)⊥, Subsection 3.1, Item 8 allows us to set
that dim(S) = dim((S⊥)⊥) and the inclusion S ⊂ (S⊥)⊥ allows us to conclude with Subsection 3.1,
Item 7.

4. A If S1 ⊆ S2, then S⊥
2 ⊆ S⊥

1 . Proof: Let us assume S1 ⊆ S2 and consider x ∈ S⊥
2 . For any y ∈ S1,

our hypothesis allows us to set that y ∈ S1, and therefore <(y∗x) = 0 which means that x ∈ S⊥
1 .

5. AM Cauchy-Schwarz Inequality: Given u, v ∈ Cn, the Cauchy-Schwarz Inequality states:

<(u∗v) ≤ ‖u‖‖v‖.

Proof: Let us first note that for any x, y ∈ Cn:

0 ≤ ‖x− y‖2 = (x− y)∗(x− y) = x∗x+ y∗y − x∗y − y∗x‖x‖2 + ‖y‖2 − 2<(x∗y),

since y∗x = x∗y. Therefore: <(x∗y) ≤ 1
2‖x‖

2 + 1
2‖y‖

2. Now considering x = u
∥u∥ and y = v

∥v∥ , one
directly remarks that ‖x‖ = ‖y‖ = 1 and one then obtains <(u∗v) ≤ ‖u‖‖v‖.

3.3 Echelon decomposition
A Given a matrix A ∈ Mp,n, there exist invertible matrices S1, . . . , St ∈ Mp (these are products of ele-
mentary matrices Pi,j , Mi(λ) or Gi,j(λ)) such that C := St · · ·S1A is in echelon form, i.e., either C = 0
or

C =



1 ∗ 0 ∗ 0 ∗ 0 ∗

1 ∗ 0 ∗
...

...

1
...

...
...

0
...

...

0
. . . 0

...
0 1 ∗

0
0


Here ∗ denotes an arbitrary (zero or nonzero) little row of C. More precisely, C = [Ci,j ] is either the zero

matrix, or there exists a sequence of natural numbers j1, . . . , jr (these are called the ”steps” of the echelon
form), where 1 ≤ j1 < · · · < jr ≤ n and 1 ≤ r ≤ min(n, p), such that

1. cij = 0 for 1 ≤ i ≤ r and 1 ≤ j < ji,

2. cij = 0 for r < i ≤ p and 1 ≤ j ≤ n,

3. ci,ji = 1 for 1 ≤ i ≤ r and all other entries in column ji are zero.

If n = p, then A is invertible if and only if C = In. In this case A−1 = St · · ·S1. In all cases, r is equal
to the rank of A. (Proof not provided here).

3.4 Determinant
Let AB ∈Mn(K), λ ∈ K. The following properties hold:

1. A det(AT ) = det(A). Proof: Note that the mapping σ ∈ Sn 7→ σ−1 ∈ Sn is a bijection of Sn (it is
even an injection), therefore one has the identity:

det(A) =
∑

σ∈Sn

Sgn(σ)A1,σ(1) · · ·An,σ(n)

=
∑

σ∈Sn

Sgn(σ−1)A1,σ−1(1) · · ·An,σ−1(n) =
∑

σ∈Sn

Sgn(σ)Aσ(1),1 · · ·Aσ(n),n = det(AT ),

10
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since Sgn(σ−1) = Sgn(σ).

2. The determinant is n-linear on the columns and on the rows of a matrix. Meaning that given a matrix
A = (a1, . . . , an) ∈Mn(K), given i ∈ [n], if ai = αbi + βci, with α, β ∈ K and bi, ci ∈ Kn:

det(A) = α det(a1, . . . , ai−1, bi, ai+1, . . . an) + β det(a1, . . . , ai−1, ci, ai+1, . . . an)

Proof: The n-linearity on the columns is a direct consequence of the signature Formula of Leibniz.
For the result on the rows, one can use Item 1.

3. Given i, j ∈ [n], i 6= j: det(Pi,jA) = det(APi,j) = det(Pi,j) det(A) = − det(A). In particular we see
that det(Pi,j) = −1. Proof: We assume i < j. The matrix Pi,jA is equal to the matrix A with a
swapping between the ith and the jth row, therefore the signature Formula of Leibniz gives us:

det(Pi,jA) =
∑

σ∈Sn

Sgn(σ)A1,σ1
· · ·Ai−1,σi−1

Aj,σi
Ai+1,σi+1

· · ·Aj−1,σj−1
Ai,σj

Aj+1,σj+1
· · ·An,σn

.

Now, denoting τ ∈ Sn, the transposition between i and j (τ(i) = j, τ(j) = i and for all k ∈ [n] \ {i, j},
τ(k) = k) we know that the mapping ıτ : σ ∈ Sn 7→ σ ◦ τ ∈ Sn is an injection of Sn, therefore, one
can replace σ with ıτ (σ) in the summand to obtain:

det(Pi,jA) =
∑

σ∈Sn

Sgn(ıτ (σ))A1,σ1
· · ·Ai−1,σi−1

Aj,σj
Ai+1,σi+1

· · ·Aj−1,σj−1
Ai,σi

Aj+1,σj+1
· · ·An,σn

.

Noting that Sgn(ıτ (σ)) = −Sgn(σ), one recognize the determinant of A and obtain the looked for
identity.

4. A If A has two identical rows or two identical columns, then detA = 0. Proof: We show the result
when A has two identical rows (of course the same result holds for the columns thanks to Item 1).
Simply note that if the ith and the jth rows are identical with i 6= j, then Pi,jA = A and Item 3 yields
to det(A) = det(Pi,jA) = − det(A) which implies that det(A) = 0.

5. det(Mi(λ)A) = det(AMi(λ)) = det(Mi(λ)) det(A) = λ det(A). In particular we see that det(Mi(λ)) =
λ. Proof: It is immediate:

det(Mi(λ)A) =
∑

σ∈Sn

Sgn(σ)A1,σ1
· · ·Ai−1,σi−1

λAi,σi
Ai+1,σi+1

· · ·An,σn
= λ det(A).

6. det(Gi,j(λ)A) = det(AGi,j(λ)) = det(Gi,j(λ)) det(A) = det(A). In particular det(Gi,j(λ)) = 1.
Proof: The n-linearity of the determinant given in Item 2 provides:

det(AGi,j(λ)) = det(A) + λ det(a1, . . . , ai−1, aj , ai, . . . , aj−1, aj , aj+1, . . . , an) = det(A),

thanks to Item 4.

7. A Given a matrix A ∈Mn having the triangular superior block decomposition:

A =

(
B C
0 D

)
, with B ∈Mp,p, C ∈Mp,q, and D ∈Mq,q, where n = p+ q,

then its determinant expresses:

detA = det(B) det(D)

Proof: Note that is we apply the Signature formula on A, all the σ ∈ Sn such that σ({p+1, . . . , n})∩
{1, . . . , p} 6= ∅ will provide empty products in the summation, one can therefore merely sum on:

Sp,q ≡ {σ ∈ Sp+q | σ({p+ 1, . . . , p+ q}) ⊂ {p+ 1, . . . , p+ q}}
= {σ ∈ Sp+q | σ({1, . . . , p}) = {1, . . . , p} and σ({p+ 1, . . . , p+ q}) = {p+ 1, . . . , p+ q}}

11
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Then it is quite easy to see that this set is in bijection with3 S[p] ×Sp+[q] through the map:

Φ : S[p] ×Sp+[q] −→ Sp,q

(σ, θ) 7−→ i 7→

{
σ(i) if i ≤ p

θ(i) if i ≥ p+ 1.

The Signature formula of Leibniz then gives us:

det(A) =
∑

σ∈Sp,q

Sgn(σ)A1,σ(1) · · ·An,σ(n)

=
∑

σ∈S[p]

∑
θ∈Sp+[q]

Sgn(Φ(σ, θ))A1,σ(1) · · ·Ap,σ(p)Ap+1,θ(p+1) · · ·An,θ(n) = det(B) det(D),

since Sgn(Φ(σ, θ)) = Sgn(σ)Sgn(θ)

8. The determinant of an n× n matrix A can be expressed using the formula involving minors:

∀j ∈ [n] : det(A) =

n∑
i=1

(−1)i+jAi,j |A−i,j | and ∀i ∈ [n] : det(A) =

n∑
j=1

(−1)i+jAi,j |A−i,j |

where |A−i,j | is the (i, j) minor of A.
Proof: Employing Item 2 let us develop the determinant around the jth column aj =

∑n
i=1 Ai,jei:

det(A) =

n∑
i=1

Ai,j det (a1, . . . , aj−1, ei, aj+1, . . . , an) .

Now, recalling that A−i,j is the matrix A after removing the ith row and the jth, we naturally denote:

Â−i,j = (a1, . . . , aj−1, ei, aj+1, . . . , an) . (1.1)

It satisfies:

P1,2 · · ·Pi−1,iÂ−i,jPj−1,j · · ·P1,2 =


1 ∗
0
... A−i,j

0

 .

Therefore Items 3 and 7 allow us to set that det(Â−i,j) = (−1)j−1(−1)j−1 ·1 · |A−i,j | = (−1)i+j |A−i,j |,
which implies the formula. The formula developed on the ith row is deduced thanks to Item 1.

9. A det(AB) = det(A) · det(B). Proof: According to Subsection 3.3, we can find invertible elementary
matrices S1, . . . , St such that C = St · · ·S1A is in its echelon form. Invoking Items 3, 5 and 6, the
determinant of A can be expressed as the product of the determinants of these matrices and C, i.e.,

det(A) = det(S−1
1 ) · · · det(S−1

t ) det(C),

and similarly for the product of A and any matrix B,

det(AB) = det(S−1
1 · · ·S

−1
t CB) = det(S−1

1 ) · · · det(S−1
t ) det(CB).

We consider two scenarios. If A is non-invertible, then C and consequently CB must contain a zero row,
leading to det(C) = det(CB) = 0. This implies det(A) = 0, and therefore det(AB) = det(A) det(B) =
0. Conversely, if A is invertible, then C must be the identity matrix In, due to its echelon form. It
follows that det(In) = 1, and hence det(AB) = det(A) det(B).

10. AM If A is invertible, detA 6= 0 and det(A−1) = 1
det(A) . Proof: Item 9 and the identity 1 = det(In)

imply 1 = det(AA−1) = det(A) det(A−1), which gives us det(A−1) = 1
det(A) .

11. AIf A ∈M2: det(A) = A1,1A2,2 −A1,2A2,1.
3Where we defined p+ [q] ≡ {p+ i, i ∈ [q]} = {p+ 1, . . . , p+ q}

12
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3.5 Inverse/Transpose of a Matrix
Let A,B ∈Mn be two invertible matrices and C ∈Mp,m and D ∈Mm,n. The following properties hold:

1. AM (CD)T = DTCT and (CD)∗ = D∗C∗. Proof: It is simply deduced from the matricial product. If
one denotes M = DTCT ∈ Mn,p and considers i ∈ [n] and j ∈ [p]: Mi,j =

∑m
k=1 Dk,iCj,k = (CD)j,i.

The hermitian transpose is simply deduced bby the distribution of the complex conjugate on the product
and on the sum (Given z1, z2 ∈ C, z1z2 = z̄1z̄2 and z1 + z2 = z̄1 + z̄2).

2. AM A square matrix is injective iif it is surjective. Proof: It is a consequence of the Dimension
Theorem: dim(Ker(A)) + dim(Im(A)) = n therefore:

A surjective ⇐⇒ dim(Im(A)) = n ⇐⇒ dim(Ker(A)) = n ⇐⇒ A injective.

3. A A matrix is invertible iif it is injective or surjective (which is equivalent to being injective AND
surjective). Proof: If A is invertible, then Ax = 0 =⇒ x = A−10 = 0 thus Ker(A) = {0} and A is
injective. If we assume that A is injective and surjective then the echelon decomposition of A given in
Subsection 3.3 ensures the existence of an invertible matrix S such that A = SC and C has an echelon
form. Given x ∈ Ker(C), we know that Ax = SCx = 0 thus x ∈ Ker(A) = {0} and therefore C is
injective as A. Now since C is squared, the previous item allows to set that C is also surjective, and
therefore, the only echelon form possible for C is without the first columns of zeros (by injectivity) and
without the last rows of zeros (by surjectivity). Finally C must have the form:

C =



1 ∗ 0 ∗ 0 ∗ 0 ∗

1 ∗ 0 ∗
...

...

1
...

...
...

...
...

0
. . . 0

...
0 1 ∗


.

Again, since the matrix C is a square matrix, all the “∗” little rows must have zero length and
consequently C = In which finally ensures that A = S is invertible.

4. A A is invertible iif its columns and its rows form a basis of Kn. Proof: We show the result for the
columns of A = (a1, . . . , an). We assume that A is invertible and we consider n scalars α1, . . . , αn such
that α1a1 + · · ·+ αnan = 0. This equation write matricially as Aα = 0 where α = (α1, . . . , αn) ∈ Kn,
multiplying by A−1 one the right, we see that α = 0, therefore a1, . . . , an are linearly independent
and one can conclude with Subsection 3.1, Item 5. If we assume now that a1, . . . , an are linearly
independent, then the equation Aα = 0 implies α = 0 which exactly means that A is injective and one
can conclude with Item 3

5. AM When p = m = n, if CD = In or DC = In then C and D are invertible and D = C−1. Proof: If
DC = In then {0} ⊂ Ker(C) ⊂ Ker(DC) = Ker(In) = {0} and therefore Ker(C) = {0} which implies
that C is injective and therefore invertible (see Item 3). Multiplying by C−1 on the left, one obtains
D = C−1.
If CD = In then Kn ⊃ Im(C) ⊃ Im(CD) = Im(In) = Kn which implies that Im(C) = Kn thus C is
surjective and therefore invertible.

6. A(A−1)−1 = A. Proof: A−1A = In, thus Item 5 allows to set that A = (A−1)−1.

7. AM (AB)−1 = B−1A−1. Proof: B−1A−1AB = B−1B = In, we then conclude with Item 5.

8. AM Given a scalar k: (kA)−1 = 1
kA

−1 if k 6= 0.

13
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9. AM(AT )−1 = (A−1)T and (A∗)−1 = (A−1)∗. Proof: Let us simply note thanks to Item 1 that:
(A−1)TAT = (AA−1)T = In and conclude with Item 5, the same argument works for the conjugate
transpose.

10. Given M ∈Mn and denoting C = Com(M), the comatrix of M : MCT = CTM = det(M)In.

Proof: Recall that C ∈Mn is defined by Ci,j = (−1)i+j |M−i,j |. Then the matrix D = CTM satisfies:

Di,j =

n∑
k=1

Ck,iMk,j =

n∑
k=1

(−1)i+k|M−k,i|Mk,j .

Consider mℓ to be the ℓ-th column of M , and define as in (1.1), the “hat” matrix:

M̂−k,i = [m1, . . . ,mi−1, ek,mi+1, . . . ,mn] ∈ Rn,n.

We saw in the proof of Subsection 3.4, Item 8 that det(M−k,i) = (−1)k+i det(M̂−k,i). Now, considering
the determinant’s linearity with respect to columns, we obtain

Di,j =

n∑
k=1

(−1)i+k(−1)k+iMkj |M̂−k,i| = det(m1, . . . ,mi−1,mj ,mi+1, . . . ,mn) =

{
0, i 6= j,

det(M), i = j,

thanks to Subsection 3.4, Item 4. One finally obtains Di,j = δi,j det(M), and thus CTM = det(M)In.
A similar argument relying on the determinant’s linearity with respect to rows shows that MCT =
det(M)In.

11. A Given four scalars a, b, c, d ∈ K such that ad − cb 6= 0:
(
a b
c d

)−1

= 1
ad−cb

(
d −b
−c a

)
Proof:

Consequence of Item 10.

12. AM Given a matrix A ∈Mn(K) and a basis B = (w1, . . . , wn) of Kn, we denote P ≡ ([w1]B, . . . , [wn]B) ∈
Mn, the change of basis matrix to B. Given a vector x ∈ Kn, [x]B = P−1x (denoting y ≡ [x]B, one
has the identity x = Py).

The representation [A]B of A in B is defined as:

[A]B = ([Aw1]B, . . . , [Awn]B) .

it satisfies [A]B = P−1AP and:

∀x ∈ Kn : [Ax]B = [A]B[x]B.

Proof: Let us simply express:

x = y1w1 + · · ·+ ynwn = Py.

To prove the second result, let us express from last result:

P−1AP = P−1(Aw1, . . . , Awn) = ([Aw1]B, . . . , [Awn]B) .

Finally, given x ∈ Kn, one has naturally:

[Ax]B = P−1Ax = P−1APP−1x = [A]B[x]B.

14
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3.6 Eigenvalues
Let us consider a square matrix A ∈Mn with k distinct eigenvalues λ1, λ2, . . . , λk. We denote Eλ1 , . . . , Eλk

the respective eigenspaces and α1, . . . , αk the respective geometric multiplicities (i.e the dimension of Eλ1 , . . . , Eλk
).

1. AM Eλ1 + · · ·+ Eλk
is a direct sum4.

Proof: For r ∈ [k], let us assume that r = 1 or Eλ1
+ · · · + Eλr

is in direct sum and consider
x1 ∈ Eλ1

, . . . , xr+1 ∈ Eλr+1
all different from zero and α1, . . . , αr+1 such that α1x1+· · ·+αr+1xr+1 = 0,

then applying A on the left, one obtains:

α1λ1x1 + · · ·+ αr+1λr+1xr+1 = 0

subtracting this equation with λr+1 · (α1x1 + · · ·+ αr+1xr+1 = 0), one obtains:

α1(λ1 − λr+1)x1 + · · ·+ αr(λr − λr+1)xr = 0,

which implies (since λ1, . . . , λr are all different from λr+1 and x1, . . . , xr are free by iteration hypoth-
esis): α1 = · · · = αr. Then αr+1 also cancels (since xr+1 6= 0) and we deduce that Eλ1

+ · · · + Eλr+1

is in direct sum.

2. AM If A has n distinct eigenvalues then it is diagonalizable (the converse is not true).
Proof: If A has n distinct eigenvalues λ1, . . . , λn (n = k), then Item 1 allows us to set that Kn =
Eλ1⊕· · ·⊕Eλn . Considering xi ∈ Eλi , we know that x1, . . . , xn is linearly independent and therefore we
know from Subsection 3.1, Item 5 that it is a basis of Kn. Writing A in this basis (see Subsection 3.5,
Item 12) gives a diagonal matrix Diag(λ1, . . . , λn). If A has n distinct eigenvalues λ1, . . . , λn, we know
that:

• For i ∈ [n], dimEλi
> 1

• Eλ1
, . . . , Eλn

are in direct sum.

Now:

dim(Eλ1
⊕ · · · ⊕ Eλn

) = dimEλ1
+ · · ·+ dimEλn

≥ n = dim(Kn) and Eλ1
⊕ · · · ⊕ Eλn

⊂ Kn,

thus Eλ1
⊕ · · · ⊕Eλn

= Kn and subsequently dimEλ1
= · · · = dimEλn

= 1. For all k ∈ [n], let us pick
one non zero vector in Ek such that Ek = Kvk. Then one can easily show from Item 1 (Eλ1

, . . . , Eλn

in direct sum) that v1, . . . , vn is free:

(anv1 + · · ·+ anvn = 0) ⇒ a1v1 = · · · = anvn = 0 ⇒ a1 = · · · = an = 0,

since the vectors v1, . . . , vn are all different from zero. Being a free family of n elements in a space
of dimension n, we know from Subsection 3.1, Item 5 that B ≡ (v1, . . . , vn) is a basis of Kn. Then
∀k ∈ [n], vk ∈ Eλk

, and therefore: Avk = λkvk = 0v1 + · · ·+ λkvk + · · ·+ 0vn, that exactly means that
[Avk]B = λkek (0 everywhere and λk in the ith entry). One can then express:

[A]B = ([Avn]B, . . . , [Avn]B) =

λ1 (0)
. . .

(0) λn

 ,

the matrix A is diagonalizable.

3. A A is diagonalizable iif
∑k

i=1 αi = n.
Proof: Let us first note that the identity

∑k
i=1 αi = n is equivalent to Kn = Eλ1

⊕ · · · ⊕Eλk
thanks to

Item 1 combined with Subsection 3.1, Items 7 and 8. Then ’if’ part is proven the same way as Item 2
but this time, one needs to consider in each eigenspace Eλi a basis of αi elements, that, put together,
will allow to diagonalize A.

4Recall that it means that if there exist x1 ∈ Eλ1
, . . . , xk ∈ Eλk

such that x1 + · · ·+ xk = 0 then x1 = · · · = xk = 0
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To show the “only if” part, let us assume A is diagonalizable and introduce the basis B = (u1 · · · un)
that diagonalizes A. We know that there exists k parameters γ1, . . . �γk ∈ N such that the representation
of A is B is:

[A]B = P−1AP =


λ1Iγ1

(0)
λ2Iγ2

. . .
(0) λkIγk

 ,

we know that
∑k

i=1 γi = k, our goal is then to show that ∀i ∈ [k] γi = αi (the algebraic multiplicity
dim(Eλi

) associated to λi). For this let us show that:

Eλi
= Kuα1+···+αi−1+1 + · · ·+Kuα1+···+αi

.

This is done through the introduction of the change of basis matrix P = (u1, . . . , un) ∈ Mn and
equivalence sequence:

x ∈ Eλi ⇐⇒ Ax− λix = 0 ⇐⇒ P−1(A− λiIn)PP−1x = 0 ⇐⇒ ([A]B − λiIn)P
−1x = 0

⇐⇒ P−1x ∈ Keα1+···+αi−1+1 ⊕ · · · ⊕Keα1+···+αi
⇐⇒ x ∈ Kuα1+···+αi−1+1 ⊕ · · · ⊕Kuα1+···+αi

,

since ∀i ∈ [n], Pei = ui and:

[A]B − λiIn =



(λ1 − λi)Iγ1 (0)
. . .

0Iγi

. . .
(0) (λk − λi)Iγk

 .

One can then directly deduce that αi = dim(Eλi) = γi which allows us to conclude.

4. A A is diagonalizable if and only if:

Kn = Eλ1
⊕ · · · ⊕ Eλk

,

(in other words, Kn has a basis of eigenvectors for A). Proof: As before, consequence of Subsection 3.1,
Item 8.

5. A When A is diagonalizable, the determinant of A is equal to the product of its eigenvalues:

det(A) = λα1
1 λα2

2 · · ·λ
αk

k .

6. A When A is diagonalizable, the trace of A is equal to the sum of its eigenvalues:

tr(A) = α1λ1 + α2λ2 + · · ·+ αkλk.

3.7 Polynomials
1. A A matrix A ∈ Mp,n commutes with any P (A) where P is a polynomial of C[X] and consequently

polynomials of A mutually commute.

2. Euclidean Division. Given two polynomial A,B ∈ K[X] such that B 6= 0, there exist two polynomials
Q,R such that:

• A = BQ+R

• deg(R) < deg(B)
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(Proof not provided here).

3. Bezout’s theorem. If Q is the greatest common divisor of n ∈ N polynomials P1, . . . , Pn (all different
from zero), then there exist n polynomials U1, . . . , Un such that:

P1U1 + · · ·+ PnUn = Q

Proof: The set of monic5 polynomialsD ∈ K[X] such that there exists n polynomials U1, . . . , Un ∈ K[X]
satisfying:

P1U1 + · · ·+ PnUn = D (1.2)

is non empty (any of P1, . . . , Pn with a correct scalar factorization belong to this set), therefore one
can consider the polynomial D with smallest degree satisfying this identity (since D is monic, D 6= 0).
Given i ∈ [n] let’s perform the euclidean division of Pi with D. There exist Qi, Ri ∈ K[X] such that
Pi = DQi + Ri and deg(Ri) < deg(D). Now, if one replaces D in the euclidean division by its value
given by identity (1.2), one obtains:

Pi = (P1U1 + · · ·+ PnUn)Qi +Ri,

Therefore:

−P1U1Qi − · · · − Pi−1Ui−1Qi + Pi(1− UiQi)− · · · − PnUnQi = Ri.

Now by minimality of D and since degRi < degD, one can deduce that ∀i ∈ [n] : Ri = 0, and therefore
D divides each P1, . . . , Pn. To show that D is the greatest common divisor, let us simply note that if
a polynomial ∆ ∈ K[X] divides each P1, . . . , Pn then it also divides D thanks to (1.2).

4. A Fundamental Theorem of Algebra. Every non-constant polynomial of C[X] has a root in C.
(Proof not provided here)

5. AM Given P ∈ C[X] and A ∈ Mn, if P (A) = 0, then for any λ, eigenvalue of A, P (λ) = 0. Proof:
Assuming that P (A) = 0 and considering an eigenvector x associated to the eigenvalue λ we have the
identity 0 = P (A)x = P (λ)x.

3.8 Characteristic polynomial
We consider below a matrix A ∈Mn(K) and denote χA its characteristic polynomial. Be careful, geometric
(dimension of eigenspaces) and algebraic (monimial degrees in χA) multiplicities can be completely different!
For instance A = ( 1 2

0 1 ) has just one eigenvalue: Sp(A) = {1}. Now the algebraic multiplicity associated to
this eigenvalue is 2 (χA = (X − 1)2) when the geometric multiplicity is 1 (E1 = Re1). Note that χA = χI2

but A 6= I2 which means that the characteristic polynomial actually does not fully characterize a matrix.

1. AM The characteristic polynomial of A is the same as the characteristic polynomial of the representation
of A in any basis of Kn. Proof: Simply note from Subsection 3.5, item 12 that given a basis B of Kn:

χ[A]B = χP−1AP = det(XIn − P−1AP ) = det(P−1(XIn −A)P ) = det(XIn −A) = χA.

2. A The set of roots of χA coincides with Sp(A) and χA is of degree n. Proof: It is simply a consequence
of the definition of the characteristic polynomial: χA = det(XIn −A) therefore χA(λ) = 0⇔ A− λIn
singular ⇔ λ eigenvalue of A.

3. A If χA has an elementary factor then A has at least one eigenvalue. In particular thanks to Subsec-
tion 3.7, Item 4, any matrix of Mn(C) has one complex eigenvalue.

5Recall that a monic polynomial is a polynomial whose coefficient associated to the highest degree monomial is equal to one.
Ex: X2 + 6 is monic, 2X − 1 is not.
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4. A Trace and determinant appear in the expression of the characteristic polynomial χA = anX +
an−1X

n−1 + · · ·+ a0:

an = 1, an−1 = −Tr(A) and a0 = (−1)n det(A).

In particular when n = 2: χA = X2−TrAX+A2. Proof: Let us express the characteristic polynomial
with the signature formula of Leibniz:

χA = det(XIn −A) =
∑

σ∈Sp,q

Sgn(σ)(Xδ1,σ(1) −A1,σ(1)) · · · (Xδn,σ(n) −An,σ(n)).

One sees immediately from this formula that χA is of degree n, an = det(In) = 1, a0 = det(−A) =
(−1)−n det(A) and monomials of degree n − 1 are only obtained in the sum for σ = IdSn

, then
Sgn(σ) = 1 and developing the product, one obtains an−1 = −A1,1 − · · · − An,n = −Tr(A).

5. AM algebraic multiplicity ≥ geometric multiplicity. Proof: The proof is similar to the proof of
Subsection 3.6 Item 4. Considering a matrix A ∈ Mp,n, one just needs to compute the characteristic
polynomial of A expressed in an extension of a basis compatible with the direct sum of the eigenspaces
B′:

[A]B′ =


λ1Iα1 ∗

λ2Iα2
(0) ∗

. . . ∗
(0) λkIαk

∗
R

 ,

Then, thanks to Subsection 3.4, Item 7, one can express: χA = χ[A]B′ = (X − λ1)
α1 · · · (X − λk)

αkχC ,
we see that the algebraic multiplicities are all bigger than the algebraic multiplicities.
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Lecture 2

Complexity of matrix computations

Complexity of an algorithm is measured by the float-point arithmetic operations, such as addition and
multiplication, and division. For x, y ∈ Rm, A ∈ Rn×m, B ∈ Rm×p:

• xT y requires m multiplications and m− 1 additions: complexity of order O(m).

• Ax requires n(2m− 1) additions and multiplications: complexity of order O(nm).

• AB requires p · n(2m− 1) additions and multiplications: complexity of order O(pnm).

Complexity of Gram-Schmidt Procedure
Given a linearly independent set a1, a2, . . . , an in Rm, the Gram-Schmidt procedure is as follows:

For i = 1, 2, . . . , n:

1. qi = ai −
∑i−1

j=1(qT
j ai)qj .

2. Normalize qi to obtain qi =
qi

∥qi∥2
.

Output q1, q2, . . . , qn as an orthonormal set.
For each iteration i:

• Every qT
j ai takes O(m).

• Computing qi takes (i− 1)O(m) +O(m).

• Computing ‖qi‖2 takes 2O(m).

Therefore,
(i− 1)O(m) +O(m) + 2O(m) = (i+ 2)O(m) = O(im)

.
Thus, the total complexity is

n∑
i=1

O(im) = O

(
n∑

i=1

im

)
= O

(
n(n+ 1)

2
m

)
= O(n2m)

.
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Matrix multiplication Complexity
The Strassen algorithm, published by Volker Strassen in 1969, was a groundbreaking method for matrix mul-
tiplication that demonstrated that the general matrix multiplication algorithm was not optimal. It reduced
the multiplication operations from 8 to 7 for a 2x2 matrix, thereby reducing the asymptotic complexity for
larger matrices. [

a1,1 a1,2
a2,1 a2,2

]
×

[
b1,1 b1,2
b2,1 b2,2

]
=

[
c1,1 c1,2
c2,1 c2,2

]

Standard algorithm

h1 = a1,1b1,1

h2 = a1,1b1,2

h3 = a1,2b2,1

h4 = a1,2b2,2

h5 = a2,1b1,1

h6 = a2,1b1,2

h7 = a2,2b2,1

h8 = a2,2b2,2

Strassen’s algorithm

h1 = (a1,1 + a2,2)(b1,1 + b2,2)

h2 = (a2,1 + a2,2)b1,1

h3 = a1,1(b1,2 − b2,2)

h4 = a2,2(b2,1 − b1,1)

h5 = (a1,1 + a1,2)b2,2

h6 = (−a1,1 + a2,1)(b1,1 + b1,2)

h7 = (a1,2 − a2,2)(b2,1 + b2,2)

c1,1 = h1 + h3

c1,2 = h2 + h4

c2,1 = h5 + h7

c2,2 = h6 + h8

c1,1 = h1 + h4 − h5 + h7

c1,2 = h3 + h5

c2,1 = h2 + h4

c2,2 = h1 − h2 + h3 + h6

• The Strassen algorithm achieves a reduction in the complexity of matrix multiplication through a
divide-and-conquer strategy that recursively breaks down each matrix into four submatrices. For
matrices of size N = 2n, the complexity can be expressed using the recursive relation f(n) = 7f(n −
1)+Θ(4n), where Θ(4n) represents the operations for the added and subtracted matrix combinations.
The asymptotic complexity thus becomes O(N log2 7) = O(N2.8074)� O(N3).

• Practical limitations: not efficient for small matrices due to the overhead of additional additions
and memory requirements. Plus somewhat reduced numerical stability. The algorithm is typically
used for large matrices (500× 500) where the trade-offs are justified by the performance gains.

• There exist theoretical improvement like the Coppersmith–Winograd algorithm and its optimized ver-
sion that present a complexity of order O(N2.37...). However the constant in the big O is overwhelming
and as a consequence these algorithms are useless for the range of matrices that can be handled on
today computers.

• Matrix multiplication multiplicity admits O(N2) as a lower bound because any exact multiplication
algorithm should at least make operation with the 2N2 entries of the two matrices.
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Lecture 3

Polynomial characterization of
Triangularizable and Diagonalizable
matrices.

Theorem 3.1 (Schur). A matrix A ∈Mn(C) (resp. A ∈Mn(R)) is triangularizable with a unitary matrix1

iif its characteristic polynomial χAcan be split into elementary factors (i.e. of degree 1). In particular2 any
matrix is triangularizible inMn(C) (thanks to Lecture 1, Subsection 3.7, Item 4).

Proof. The “only if” part is obvious thanks to the definition of the Characteristic polynomial and Lecture 1,
Subsection 3.4, Item 7.

The “if” part relies on an algorithmic proof which involves a sequence of reductions. Considering one root
λ1 of χA (it exists thanks to Lecture 1, Subsection 3.8, Item 3) x1 is a normalized eigenvector of matrix A
corresponding to the eigenvalue λ1. We can extend the nonzero vector x1 to form a basis {x1, y2, y3, . . . , yn}
of Cn.

Applying the Gram-Schmidt process, we obtain an orthonormal basis {x1, z2, . . . , zn}. These orthonormal
vectors, arranged as columns, construct a unitary matrix U1. The product U∗

1AU1 reveals a matrix with the
form

U∗
1AU1 =

[
λ1 ∗
0 A1

]
,

where A1 ∈Mn−1 and has eigenvalues λ2, . . . , λn.
Note now from Lecture 1, Subsection 3.4, Item 7 that χA1

is a factor of χA, therefore one can repeat the
above process: consider an eigenvalue λ2 of A2, an associated normalized eigenvector x2 ∈ Cn−1 and find a
unitary matrix U2 ∈Mn−1 such that

U∗
2A1U2 =

[
λ2 ∗
0 A2

]
.

Define V2 =

[
1 0
0 U2

]
.

Both V2 and U1V2 are unitary, and V ∗
2 U

∗
1AU1V2 has the formλ1 ∗ ∗

0 λ2 ∗
0 0 A2

 .

We continue this process to generate unitary matrices Ui ∈Mn−i+1, i = 1, . . . , n−1 and unitary matrices
Vi ∈Mn, i = 2, . . . , n− 1. As a result, the matrix U = U1V2V3 · · ·Vn−1 is unitary and U∗AU yields a matrix
in the desired upper triangular form.

1It means that there exists a unitary matrix U such that U∗AU is triangular
2Because any polynomial of C[X] can be split into elementary factors, one says that C is “algebraically closed”.
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If all eigenvalues of A ∈ Mn(R) are real, then corresponding eigenvectors can also be chosen to be real.
Thus, the aforementioned steps can be performed using real arithmetic.

Remark 3.2. The following matrix is not triangularizable in Mn(R) since its characteristic polynomial
does not admit elementary factors:

A =

(
0 1
−1 0

)
,

indeed χA = X2 + 1.

Definition 3.1 (Dense sets). Given a set V endowed with a metric d, we say that a subset S ⊂ V is dense
in V if for all x ∈ V , ε > 0 there exists y ∈ S such that:

d(x, y) ≤ ε.

On Mp,n, a natural metric can be introduced thanks to the Frobenius norm (or Hilbert-Shmidt norm)
defined for any A ∈Mp,n as:

‖A‖F =
√

Tr (A∗A).

Corollary 3.3. The set of complex diagonalizable matrices is dense3 inMn(C).

Proof. Given a matrix A ∈ Mp,n(C) and a parameter ε > 0, we know from Theorem 3.1 that there exist
P ∈Mp,n(C) and λ1, . . . , λn ∈ C such that:

T ≡ P−1AP =

λ1 ∗
. . .

(0) λn

 .

Let us then note:

A(ε) ≡ PT (ε)P−1, with T (ε) ≡

λ1 + ε1 ∗
. . .

(0) λn + εn

 ,

where ε1, . . . , εn ∈ (0, ε√
n
] are chosen such that the scalars λ1 + ε1, . . . , λn + εn are all distinct. Lecture 1,

Subsection 3.6, Item 2 allows us to set that T (ε) is diagonalizable, besides:∥∥∥A−A(ε)
∥∥∥ =

√
Tr
((

A−A(ε)
)T (

A−A(ε)
))

=

√
Tr
(
P−1

(
T − T (ε)

)T (
T − T (ε)

)
P
)

=

Tr


 ε1 ∗

. . .
(0) εn


T  ε1 ∗

. . .
(0) εn





1
2

=

√√√√ n∑
i=1

ε2i ≤ ε.

Theorem 3.4 (Cayley Hamilton Theorem). χA(A) = 0.

Proof. The identity is obvious for diagonalizable matrices. Given a matrix A ∈Mn(C), we know that there
exists a sequence of diaonalizabe matrices (An)n∈N ∈Mn(C) such that limAn = A. Then the continuity of
the determinant (it is only sums and products) provides us the convergence:

0 = lim
n→∞

χAn
(An) = χA(A),

which ends the proof.
3For the metric d defined for any A,B ∈ Mn as d(A,B) = ‖A − B‖F , since we are in finite dimension, the choice of the

norm is not important.
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Theorem 3.5. A square matrix A ∈ Mn(K) is diagonalizable iif its minimal annihilating polynomial
PA ∈ K[X] splits in K[X] and has distinct roots4.

Remark 3.6. The matrix A and B below have the same characteristic polynomial (equal to (X − 1)2) but
their minimal annihilating polynomial are respectively equal to (X − 1) and (X − 1)2, that is why only A is
diagonalizable:

A =

(
1 0
0 1

)
and B =

(
1 1
0 1

)
Proof. The “if” part is a consequence of Bezout Theorem (see Lecture 1, Subsection 3.7 Item 3). Let us
note λ1, . . . , λk, the k distinct roots of the minimal annihilating polynomial of A, PA and introduce the
polynomials P1, . . . , Pk ∈ K[X] satisfying:

∀i ∈ [n], Pi =

n∏
j=0
j ̸=i

(X − λj).

We know that P1, . . . , Pk highest common denominator is 1 (because none of the λ1, . . . , λk is root to all
P1, . . . , Pk), therefore, Bezout Theorem (Lecture 1, Subsection 3.7 Item 3) allows us to state the existence
of U1, . . . , Uk such that:

1 = U1P1 + · · ·+ UkPk,

and consequently Ik = U1(A)P1(A) + · · ·+Uk(A)Pk(A) (applying A on the right). Now considering v ∈ Rn,
one sees first that:

v = U1(A)P1(A)v + · · ·+ Uk(A)Pk(A)v,

which means that Kn = Im(U1(A)P1(A)) + · · · + Im(Uk(A)Pk(A)). Besides, for any i ∈ [k] and u ∈
Im(Ui(A)Pi(A)), Lecture 1, Subsection 3.7, item 1 allows us to set that there exists w ∈ K such that:

(A− λiIn)u = (A− λiIn)Ui(A)Pi(A)w = Ui(A)PA(A)w = 0,

therefore u ∈ Eλi
, the eigenspace associated to λi. One then has the inclusion sequence:

Kn = Im(U1(A)P1(A)) + · · ·+ Im(Uk(A)Pk(A)) ⊂ Eλ1 ⊕ · · · ⊕ Eλi ⊂ Kn,

therefore Eλ1 ⊕ · · · ⊕ Eλi = Kn which implies that A is diagonalizable thanks to Lecture 1, Subsection 3.6,
item 4.

Let us now assume that A is diagonalizable to show the “only if” part. There exist k distinct eigenvalues
such that Kn = Eλ1

⊕ · · · ⊕ Eλk
thanks to Lecture 1, Subsection 3.6, Item 4. Therefore, given v ∈ Kn,

there exist v1, . . . , vk ∈ Kn such that ∀i ∈ [k], vi ∈ Eλi
and v = v1 + · · · + vk. Then, if we note P =

(X − λ1) · · · (X − λk), one has the identity:

P (A)v = P (A)v1 + · · ·+ P (A)vk = P1(A)(X − λ1)v1 + · · ·+ Pk(A)(X − λk)vk = 0,

with the notation P1, . . . , Pk given before. Besides, we know from Lecture 1, Subsection 3.7, Item 5, that
for all i ∈ [k], λi is a root of PA, the minimal annihilating polynomial of A. Noting that P divides PA and
annihilates A, one can conclude that P = PA by definition of PA.

4That means that there exist k distinct roots λ1, . . . , λk ∈ K of PA such that PA(X) = (X − λ1) · · · (X − λk).
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Lecture 4

Exponential of matrices and
Canonical decomposition

1 Exponential of matrices
Definition 4.1 (Exponential of matrices). Given a matrix A ∈Mn(K), the exponential of A is noted exp(A)
or eA and defined as:

eA ≡
∞∑
k=0

Ak

k!
.

Example 4.1. 1. Diagonal Matrices. Given a diagonal matrixD = Diag(λ1, . . . , λn) where λ1, . . . , λn ∈
K the exponential of D writes:

eDA ==

∞∑
k=0

Dk

k!
=

∞∑
k=0

1

k!

λk
1 (0)

. . .
(0) λk

n

 =


∑∞

k=0
1
k!λ

k
1 (0)

. . .
(0)

∑∞
k=0

1
k!λ

k
n

 =

eλ1 (0)
. . .

(0) eλn

 .

2. Block Diagonal Matrices. The same identity holds for block diagonal matrices, given A ∈ Mn,
d ∈ N, d integers n1, . . . , nd and d matrices A1 ∈Mn1 , . . . , Ad ∈Mnd

such that A = Diag(A1, . . . , An):

eA =

∞∑
k=0

1

k!

Ak
1 (0)

. . .
(0) Ak

d

 =

eA1 (0)
. . .

(0) eAd

 .

3. Diagonalizable Matrices. Given a matrix A ∈ Mn such that there exists P ∈ Mn invertible
satisfying P−1AP = D (with D being the diagonal matrix introduced in item 1), the exponential of A
writes:

eA =

∞∑
k=0

(PDP−1)k

k!
=

∞∑
k=0

PDkP−1

k!
= P

( ∞∑
k=0

Dk

k!

)
P−1 = PDiag(eλ1 , . . . , eλk)P−1.

4. Nilpotent matrices. Given a nilpotent matrix of order1 p, the exponential of N is simply a sum of
p elements:

eN =

p−1∑
k=0

Nk

k!
.

1It means that Np−1 6= 0 and Np = 0.
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Proposition 4.2. Given two matrices A,B ∈Mn such that AB = BA, one has the identity:

eA+B = eAeB

This proposition relies on a the Cauchy product formula given in next Lemma.
Lemma 4.3. Given two commuting2 matrices A,B ∈Mn, for any i ∈ N:

(A+B)i =

i∑
i=0

(
i
k

)
AkBi−k,

where we recall that
(
i
k

)
= i!

k!(i−k)!

proof of Proposition 4.2. Let us simply express regrouping the term with identical total exponent i = k + l:

eAeB =

( ∞∑
k=0

Ak

k!

)( ∞∑
l=0

Bl

l!

)
=

(
In +A+

A2

2
+

A3

3!
+ · · ·

)(
In +B +

B2

2
+

B3

3!
+ · · ·

)

= In +A+B︸ ︷︷ ︸
i=1

+
A2

2
+AB +

B2

2︸ ︷︷ ︸
i=2

+
A3

3!
+

A2B

2
+

AB2

2
+

B3

3!︸ ︷︷ ︸
i=3

+ · · · =
∞∑
i=0

i∑
k=0

Ak

k!

Bi−k

(i− k)!
.

The Cauchy product formula given in Lemma 4.3 then provides:

eAeB =

∞∑
i=0

1

i!

i∑
k=0

(
i
k

)
AkBi−k =

∞∑
i=0

1

i!
(A+B)i = eA+B .

This proposition will become very useful once one will get the Jordan decomposition introduced in next
section. Given d ∈ N and λ ∈ K, we denote:

Jd(λ) =


λ 1 (0)

. . . . . .
. . . 1

(0) λ

 ∈Md. (4.1)

Example 4.4. Note that Jd(λ) = λId + Jd(0) and for all k ∈ [d− 1], Jd(0)k is a matrix full of 0 with 1 on
the kth upper diagonal and Jd(0)

d = 0 (Jd(0) is a nilpotent matrix of degree d). One can express ∀t ∈ R:

eJd(0) =

d−1∑
k=0

Jd(0)
k

k!
=



1 1 1
2! · · · 1

(d−1)!

. . . . . . . . . ...
. . . . . . 1

2!

(0)
. . . 1

1


(4.2)

Then, noting that λId and Jd(0) commute, one can compute thanks to Proposition 4.2:

eJd(λ) = eλIdeJd(0) =



eλ eλ eλ

2! · · · eλ

(d−1)!

. . . . . . . . . ...
. . . . . . eλ

2!

(0)
. . . eλ

eλ


. (4.3)

2It means that AB = BA.
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Let us end this section with a simple corollary that helps us to compute the inverse of the exponential of
a matrix.

Corollary 4.5. Given A ∈Mn(K), (eA)−1 = e−A.

Proof. It is a simple consequence of Proposition 4.2 since we know that A and −A commute, one can write:

In = e0 = eA−A = eAe−A.

2 Nilpotent matrices and canonical decomposition
The Jordan decomposition, also called the Canonical decomposition (see Proposition 4.11) is a matrix of the
form: Jd1(λ1) (0)

. . .
(0) Jdk

(λk)

 , (4.4)

where some of the λ1, . . . , λk are possibly equal and the blocks Jd1
(λ1), . . . , Jdn

(λn) are the Jordan block
defined in (4.1).

We will show below that any matrix ofMn(K) is similar inMn(C) to a matrix that satisfies the Jordan
decomposition (4.4) (we know from Lecture 3, Remark 3.2, that this is not true in Mp,n(R) because that
would mean that real matrices are all triangularizable in Mp,n(R)). Recall that Jdi

(λi) is exactly the sum
of a diagonal matrix and a nilpotent matrix. A simple proof of the existence nilpotent character of Jdi

(λi)
somehow relies on an important result of nilpotent matrices depicted below.

Theorem 4.6. Given a nilpotent matrix N ∈ Mp,n(K) of degree d, considering x0 ∈ Rd such that h0 ≡
Ad−1x 6= 0, note that:

hT
0 A

d−1x0 6= 0,

and of course (AT )d−1h0 6= 0, and (AT )d = 0. Now, if we introduce:

F = Kx0 + · · ·KAd−1x0 and G =
(
Kh0 + · · ·K(AT )d−1h0

)⊥
,

we have the two properties:

• Kn = F ⊕G

• F and G are invariant through A.

Proof. It is easy to show that x0, . . . , A
d−1x0 and h0, . . . , (A

T )d−1h0 are both linearly independent because
A and AT are both nilpotent of degree d. Let us assume that there exists d scalars α0, . . . , αd−1 such that:
α0x0 + · · · + αd−1A

d−1x0 = 0, then sequentially applying Ad−1, Ad−2 etc.. and A to this equation, we
progressively show that α0 = 0, α1 = 0...etc and αd+1 = 0, which proves that x0, . . . , A

d−1x0 are linearly
independent. The same holds of course for h0, . . . , (A

T )d−1h0. As a consequence, we know that dimF = k
and from Lecture 1, Subsection 3.2, Item 2 that dimGT = n− k.

Now, assuming that there exist x ∈ F ⊂ {0}, y ∈ G ⊂ {0} and two scalars α, β such that αx + βy = 0,
we know that there exist k ∈ [d] such that x =

∑d
i=k λiA

i−1x0 and λk 6= 0 then we know that:

0 = hT
0 A

d−k(αx+ βy) = αhT
0

d∑
i=k

λi(A
d−k+i−1x) = λiαh

T
0 A

d−1x

(since y ∈ (KhT
0 A

d−k)⊥ and Ad−k+i−1x = 0 for all i ≥ k + 1), then the initial hypothesis αhT
0 A

d−1x 6= 0
allows us to conclude that λiα = 0 which implies α = 0 by hypothesis on λi. Of course then, one also has
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β = 0 (since y 6= 0) and one has proven that G⊥ and F are in direct sum. Then dim(F ⊕ G⊥) = n and
F ⊕G⊥ = Kn thanks to Lecture 1, Subsection 3.1, Item 7.

One is left to show that F and G⊥ are A-invariant. Given x ∈ G⊥, we know that for all i ∈ [k]:

(Ax)T (AT )i−1h0 = xT (AT )ih0 = 0

since x ∈ (K(AT )ih0)
⊥ if i ≤ k−1 and (AT )kh0 = 0. Thus Ax ∈ G⊥, and we see that GT is A-invariant.

Theorem 4.7. Given a matrix A ∈ Mn(K) there exist two A-invariant subspaces U1 ⊆ Kn and U2 ⊆ Kn

with Kn = U1 ⊕ U2, such that A|U1
is bijective and A|U2

is nilpotent.

Proof. If v ∈ ker(A), then A2v = A(Av) = A(0) = 0. Thus, v ∈ ker(A2) and therefore ker(A) ⊆ ker(A2).
Proceeding inductively, we see that

{0} ⊆ ker(A) ⊆ ker(A2) ⊆ ker(A3) ⊆ · · · .

Since Kn is finite dimensional, there exists a smallest number m ∈ N0 with ker(Am) = ker(Am+j) for all
j ∈ N. For this number m let

U1 := im(Am), U2 := ker(Am).

(If A is bijective, then m = 0, U1 = Kn and U2 = {0}.) We now show that the spaces U1 and U2 satisfy
the assertion.

First observe that U1 and U2 are both A-invariant: If v ∈ U1, then v = Amw for some w ∈ Kn, and
therefore Av = A(Amw) = Am+1w ∈ U1. If v ∈ U2, then Amv = Am(Amw) = Am(0) = 0, and therefore
Av ∈ U2.

We have U1+U2 ⊆ Kn. An application of the dimension formula for linear maps to Am gives dim(Kn) =
dim(U1) + dim(U2). If v ∈ U1 ∩ U2, then v = Amw for some w ∈ Kn (since v ∈ U1) and hence

0 = Amv = Am(Amw) = A2mw.

The first equation holds since v ∈ U2. By the definition of m we have ker(A2m), which implies Amw = 0,
and therefore v = Amw = 0. From U1 ∩ U2 = {0} we obtain Kn = U1 ⊕ U2.

Let us consider v ∈ U1 such that Available = 0. There exists a vector w ∈ Kn with v = Amw,
which implies 0 = Av = A(Amw) = Am+1w. By the definition of m we have ker(Am) = ker(Am+1), thus
w ∈ ker(Am), and therefore v = Amw = 0. This implies that ker(A|U1

) = {0}, i.e., A|U1
is injective and

thus also bijective.
Finally, since U2 = ker(Am), for all v ∈ U2, Amv = 0 which exactly means that A in nilpotent on U2.

One can now prove the existence and uniqueness of the Jordan decomposition for any triangularizable
matrix

Theorem 4.8. Any triangularizable matrix A ∈ Mn(K) admits a Jordan decomposition. In other words,
there exists an invertible matrix P ∈ Mn(K) such that P−1AP follows the decomposition (4.4) for some
k ∈ [n], some scalars λ1, . . . , λk ∈ K possibly equal and some d1, . . . , dk ∈ N∗.

Proof. We know from Lecture 3, Theorem 3.1 that A admits at least one eigenvalue λ1 ∈ K. then setting
B1 = A− λ1In, we know from Theorem 4.7 that Kn = Vλ1

⊕ V−λ1
such that B1 is stable on Vλ1

and V−λ1

and |B1
Vλ1

is nilpotent and |B1
V−λ1

is bijective.
Nos we apply Theorem 4.6 to set the existence of two B1-invariant subspace U

(λ1)
1 ⊂ Vλ1

and U
(λ1)
−1 ⊂ Vλ1

such that Vλ1
= U

(λ1)
1 ⊕U (λ1)

−1 and of a vector x0 ∈ Vλ1
such that U (λ1)

1 = Kx0+KB1x0⊕· · ·⊕KB
dim U

(λ1)
1

1 x0.

The decomposition of the matrix |B1
U

(λ1)
1 in the base {x0, . . . , B

d
(λ1)
1

1 x0} (where we noted d
(λ1)
1 ≡ dim(U

(λ1)
1 ))

writes: 
0 1 (0)
... . . . . . .
... . . . 1
0 · · · · · · 0,

 (4.5)
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and since A = B1+λ1In it is also stable on U
(λ1)
1 and its decomposition on the base {x(λ1)

0 , . . . , B
d
(λ1)
1

1 x
(λ1)
0 }

is exactly the block J
d
(λ1)
1

(λ1).

The matrix B1 is also nilpotent on U
(λ1)
−1 ), one can therefore reproduce the process until one gets a1

subspaces U
(λ1)
1 , . . . , U

(λ1)
a1 and vectors x

(λ1)
0 ∈ U

(λ1)
1 , . . . , x

(λ1)
a1 such that:

V1 = Kx
(λ1)
1 ⊕KBd

(λ1)
1 x

(λ1)
1 ⊕ · · · ⊕Kx(λ1)

a1
⊕KBd(λ1)

a1 x(λ1)
a1

.

The restrict of A in V1, then writes with this basis decomposition:
J
d
(λ1)
1

(λ1) (0)

. . .
(0) J

d
(λ1)
a1

(λ1)


Recalling that Kn = Vλ1

⊕ V−λ1
and that A − λ1In is bijective on V−λ1

, we know that λ1 is not an
eigenvalue of |AV−λ1

, therefore, one consider a new eigenvalue of |AV−λ1
and reproduce the same process

done above until one gets a complete Jordan decomposition of A:

J =



J
d
(λ1)
1

(λ1) (0)

. . . (0)
(0) J

d
(λ1)
a1

(λ1)

. . .
J
d
(λk)

1

(λk) (0)

(0)
. . .

(0) J
d
(λk)
ak

(λk)


, (4.6)

where λ1, . . . , λk are all distinct scalars.

Lemma 4.9. Given λ ∈ K and d ∈ N, the geometric multiplicity of Jd(λ) is exactly 1 and the algebraic
multiplicity of Jd(λ) (i.e. the exponent of (X − λi) as a factor of χJd(λ)) is equal to d.

Proof. The algebraic multiplicity is simply deduced from Lecture 1, Subsection 3.4, Item 7 from which we
deduce that χJd(λ) = (X − λ)d. To deduce the geometric multiplicity, let us simply note from the form of
Jd(λ)− λId give in (4.5) that ker(Jd(λ)− λId) = Ke1 (and Im(Jd(λ)− λId) = Ke1 ⊕ · · · ⊕Kek−1).

As a simple consequence, one gets the following lemma (provided without proof):

Lemma 4.10. Let us consider the matrix J defined in (4.6), if we assume that all the λ1, . . . , λk are distinct,
then for all i ∈ [k], algebraic multiplicity and the geometric multiplicities associated to λi are respectively
equal to

∑ai

l=1 d
(λi)
ai and ai.

The following proposition justifies the uniqueness of the Jordan decomposition and explains why it is
often called the “canonical decomposition”.

Proposition 4.11. Given a triangularizable matrix A ∈Mn(K), there exists a unique Jordan decomposition
of A up to a permutation of the diagonal blocks.

Proof. It is a consequence of Lemma 4.10, the fact that the matrices Jd(λ) are uniquely defined by λ
and d and that similar matrices present equal eigenvalues with equal associated algebraic and geometric
multiplicities.
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3 Resolution of linear differential equations
Proposition 4.12. Given a matrix A ∈Mn(K):

∂etA

∂t
= AetA.

Proof. Let us differentiate:

∂etA

∂t
=

∂

∂t

(
In + tA+

t2A2

2!
+

t3A3

3!
+ · · ·

)
= A+ tA2 +

t2A2

2!
+ · · · = AetA.

Example 4.13. Given d ∈ N and t ∈ R, note from (4.2) that:

etJd(0) =



1 t t2

2! · · · td−1

(d−1)!

. . . . . . . . . ...
. . . . . . t2

2!
. . . t

(0) 1


Therefore, one can check that:

∂etJd(0)

∂t
=



0 1 t · · · td−2

(d−2)!

. . . . . . . . . ...
. . . . . . t

. . . 1
(0) 0


= Jd(0)e

tJd(0).

Theorem 4.14. The differential equation3: {
ẏ = Ay

y(0) = y0 ∈ Rn (4.7)

admits as unique solution y : t 7→ etAy0.

Example 4.15. Let us consider a mass m > 0 that is fastened to a spring, which possesses a spring constant
µ > 0. Denote x0 > 0 as the initial displacement of the mass from its position of equilibrium. We aim to
find the position x(t) of a weight at time t ≥ 0, with the initial position x(0) = x0. Hooke’s law governs the
extension of the spring, leading to a second-order ordinary differential equation:

ẍ =
d2x

dt2
= − µ

m
x,

where x(0) = x0 and ẋ(0) = v0, with v0 > 0 representing the initial velocity of the mass. This second-
order differential align* can be recast as a first-order system by defining v as the velocity, which is the time
derivative of x, i.e., v = ẋ. Consequently, v̇ = ẍ, and we can represent the system as

ẏ = Ay, where A =

[
0 1
− µ

m 0

]
, y =

[
x
v

]
.

3This formalism means that we look for a differentiable mapping y : R 7→ Rn such that ∀t ∈ R: ẏ(t) = ∂y
∂t

= y′(t) = Ay(t)
and y(0) = y0.
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Here, the initial condition transforms to y(0) = y0 = [x0, v0]
T . According to Theorem 4.14, the solution to

this homogeneous initial value problem is uniquely defined by y = exp(At)y0. We identify the eigenvalues
of A as a matrix of M2(C) to be two complex numbers λ1 = iρ and λ2 = −iρ, where ρ =

√
µ
m . The

corresponding eigenvectors are

v1 =

[
1
iρ

]
∈ C2, v2 =

[
1
−iρ

]
∈ C2.

Thus introducing the change of basis matrix P = (v1, v2) ∈M2(C)

exp(At)y0 = S

[
eiρt 0
0 e−iρt

]
S−1y0, with S =

[
1 1
iρ −iρ

]
∈M2(C).

Example 4.16. The Jordan decomposition helps us to solve the differential equation (4.7) for a general
A ∈Mn(C) since we know from Theorem 4.8 that there exists P ∈Mp,n(C) such that:

P−1AP =

Jd1(λ1) (0)
. . .

(0) Jdn
(λn)

 .

One can then compute thanks to Example 4.1, Item 2:

etA = P

etJd1
(λ1) (0)

. . .
(0) etJdn (λn)

P−1 = P

etλ1etJd1
(0) (0)

. . .
(0) etλneJdn (0)

P−1,

where etJd1
(0), . . . , etJdn (0) have been provided in Example 4.13.
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Lecture 5

Largest eigenvalues and
Perron Frobenius Theorem

1 Motivation: Page rank algorithm
Let us depict below the general page ranking problem on the internet. Most internet pages are reached
through links accessed from other pages. Some pages have few such access links, some have a lot, the
ranking system should take into account the difference in popularity of the different pages to provide good
advice in search engine like Google.

P1 P2

P3 P4

Let us then denote:

• Cj : the number of outgoing links of page j.

• Li: the set of pages that refer to page i.

• vi: importance score of page i.

The score should then satisfy the equation:

vi =
∑
j∈Li

vj
Cj

, i = 1, . . . ,m

This leads to the matrix equation: 
0 1

2
1
2

1
3

1 0 0 1
3

0 1
2 0 1

3
0 0 1

2 0



v1
v2
v3
v4

 =


v1
v2
v3
v4


The Page Rank problem formalizes in a general setting of n pages:

Find v ∈ Rn
+ s.t. Av = v (5.1)
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where the matrix A ∈ Mn(R+) contains in the column j the values 1
Cj

at the indexes i such that page j

links to page i.

Questions:

1. Does Av = v admit a non-negative solution?

2. Is the solution unique?

3. How to solve Av = v ?

2 Power method
The power method is a classical technique to find the eigen vector associated to the biggest eigen value of
a matrix that has one eigen value with strictly higher modulus. In practice, we compute a sequence y(k)

iteratively that should converge to the eigenvector associated to the highest eigenvalue. Given a vector
x ∈ Cn, we note ν(x) = xj where j ∈ [n] is the smallest index such that |xj | = ‖x‖∞.

Algorithm 1 Compute the eigenvector and eigenvalue iteratively
Consider an initial guess x,
error = 1
while error > tol do

y = Ax.
if ν(y) = 0 then

output (0, x).
else

error =
∥∥∥x− y

ν(y)

∥∥∥
∞

x = y
ν(y) .

Output (ν(y), x) as the eigenvalue-eigenvector pair.

If the output is (0, 0), it means that the algorithm was badly initiated, but that never happens when
x is chosen uniformly in {Rn

+, ‖x‖∞ = 1}. Indeed the validity of the method is justified by the following
proposition.

Proposition 5.1. Let us consider a diagonalizable square matrix A ∈Mn(R) that has n (possibly identical)
eigenvalues λ1, . . . , λn ∈ C such that |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0, and a basis B = (v1, . . . , vn) of
ν-normalized corresponding eigenvectors (for all i ∈ [n]: ν(vi) = 1 and Avi = λivi). We consider a vector
y(0) =

∑n
i=1 βivi ∈ Cn, such that β1 6= 0 and a sequence (y(k))k∈N satisfying:

∀k ∈ N : y(k+1) =
Ay(k)

ν(Ay(k))
, (5.2)

where jk is the smallest index such that |(Ay(k))jk | = ‖Ay(k)‖∞. The sequence (y(k))k∈N is well defined
(Ay(k) 6= 0) tends to v1 and eTjkAy(k) tends to λ1.

Be careful, when the dominant eigenvalue of A has an imaginary part different from 0 but A ∈ Mn(R),
the associated eigenvector also has a non trivial imaginary part, and therefore, one should initialize the
power method algorithm with a random complex vector in order to ensure that β1 6= 0.

This proposition relies on two small lemmas on the mapping ν, the first one is quite obvious therefore,
we just prove the second one.
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Lemma 5.2 (homogeneity of ν). Given x ∈ Cn and α ∈ C: ν(αx) = αν(x).

Lemma 5.3 (Continuity of ν). Given a vector x ∈ Cn and a sequence of vectors uk such that limuk = 0,
we have the convergence lim ν(x+ uk) = ν(x).

Proof. For k big enough, say for k > K, the entries of uk are so small that the ordering of the entries of x
(in modulus) is the same as the ordering of the entries of x+uk. The smallest index j such that |xj | = ‖x‖∞
is also the smallest index such that |[x+ uk]j | = ‖x+ uk‖∞, thus for k ≥ K:

ν(x+ uk) = [x+ uk]j −→
k→∞

[x]j = ν(x).

Proof of Proposition 5.1. Let us start with the identity:

Ay(0) = A

(
n∑

i=1

βivi

)
=

n∑
i=1

βiAvi =

n∑
i=1

βiλivi,

which then implies thanks to Lemma 5.2:

y(k) =
Ay(k−1)

ν(Ay(k−1))
=

A Ay(k−2)

ν(Ay(k−2)

ν
(
A Ay(k−2)

ν(Ay(k−2))

) =
A2y(k−2)

ν
(
A2y(k−2)

) = · · · = Aky(0)

ν(Aky(0))
=

∑n
i=1 βiλ

k
i vi

ν(Aky(0))
.

Let us then define:

uk ≡
n∑

i=1

βi

β1

(
λi

λ1

)k

vi − v1,

and compute the limit:

‖uk‖∞ =

∥∥∥∥∥
n∑

i=1

βi

β1

(
λi

λ1

)k

vi − v1

∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

i=2

βi

β1

(
λi

λ1

)k

vi

∥∥∥∥∥
∞

−→
k→∞

0, (5.3)

since
(

λi

λ1

)k
−→
k→∞

0 for all i > 1. Let us compute the limit:

∥∥∥y(k) − v1

∥∥∥
∞

=

∥∥∥∥ Akx(0)

ν(Akx(0))
− v1

∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥
β1λ

k
1

∑n
i=1

βi

β1

(
λi

λ1

)k
vi

β1λk
1ν

(∑n
i=1

βi

β1

(
λi

λ1

)k
vi

) − v1

∥∥∥∥∥∥∥∥
∞

=

∥∥∥∥ uk + v1
ν(uk + vi)

− v1

∥∥∥∥
∞
−→
k→∞

0,

thanks to (5.3) and Lemma 5.3. One can further add that:

lim
k→∞

ν(y(k)) = ν(Av1) = λ1ν(v1) = λ1,

again thanks to the continuity of ν given in Lemma 5.3.

The Page rank algorithm is used in practice to compute the solution v to the problem (5.1), however,
one still needs to prove the existence and uniqueness of such a solution. We will provide in the next two
sections some elements of theory concerning the matrix norms and the spectral radius that provide some
insights into the highest eigenvalue. In Section 6, we will provide and prove the Perron Frobenius Theorem
at the basis of our existence and uniqueness result. In the last section we will explain and justify how is
conducted the Page Rank algorithm.
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3 Equivalent norms and matrix norms
Recall the definition of a norm on a vectorial space (like Mp,n).

Definition 5.1 (Norm). • Given a vector space E, a norm ‖ · ‖ is a mapping from E to R+ that should
satisfy:

1. Non-negativity: ∀u ∈ E: ‖u‖ ≥ 0.
2. Positive definiteness: ∀u ∈ E: ‖u‖ = 0 if and only if u = 0 (the zero vector).
3. Scalar Multiplication: ∀u ∈ E, α ∈ K: ‖αu‖ = |α|‖u‖.
4. Triangle Inequality: ∀u, v ∈ E: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

• Two norms ‖ · ‖, ‖ · ‖′ defined on E are said to be equivalent iif there exists two constants C, c > 0 such
that:

∀x ∈ E : c‖x‖ ≤ ‖x‖′ ≤ C‖x‖.

On finite dimension space (like Mp,n), the choice of the norm is not very important thanks to next
important result.

Proposition 5.4. In finite dimension vector space all norms are equivalent.

This is a famous result in topology1, therefore, not to go beyond the scope of this course, we just provide
partial elements of this proof.

Element of proof. We just show that given a vector space E and a basis (u1, . . . , un) (if dimE = n), all
norms are continuous under the norm ‖ · ‖1 defined as:

∀x =

n∑
i=1

xiui ∈ E : ‖x‖1 =

n∑
i=1

|xi|.

Indeed, thanks to the triangular inequality, one can bound for the same vector x and for a norm ‖ · ‖:

‖x‖ =

∥∥∥∥∥
n∑

i=1

xiui

∥∥∥∥∥ ≤
n∑

i=1

|xi| ‖ui‖ ≤ C‖x‖1, with: C = max
i∈[n]
‖ui‖.

The norm ‖ · ‖1 can then be used as a pivot to show that all norms are equivalent.

This proposition allows us to define the limit in Mp,n without introducing a particular norm.

Definition 5.2 (Limit of matrices). Given a sequence of matrices (Am)m∈N ∈Mp,n, and a matrix A ∈Mp,n,
we say that lim

m→∞
An = A iif. one of the following properties is satisfied:

1. Given a norm ‖ · ‖ onMp,n:

∀ε > 0, ∃N ∈ N, s.t. ∀n ≥ N : ‖An −A‖ ≤ ε.

2. For any norm ‖ · ‖ onMp,n:

∀ε > 0, ∃N ∈ N, s.t. ∀n ≥ N : ‖An −A‖ ≤ ε.

Definition 5.3 (Matrix norm). A matrix norm ‖ · ‖ on Mp,n(C) is a norm that satisfies for any A,B ∈
Mp,n(C):

‖AB‖ ≤ ‖A‖‖B‖.
1See for instance Chapter III, Proposition 7.2. in Choquet, Gustave., and Amiel. Feinstein. Topology. New York: Academic

Press, 1966. Print.
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Example 5.5. For any M ∈Mn, p ∈ [1,∞], we note:

|||M |||p = sup
{
‖Mx‖p
‖x‖p

, x ∈ C \ {0}
}
,

where we recall that ∀p ≥ 1, ‖x‖p = (
∑n

i=1 |xi|p)
1
p and ‖x‖∞ = maxi∈[n] |xi|. in particular, for any M ∈Mn:

|||M |||1 = max
j∈[n]

n∑
i=1

|Mi,j | and |||M |||∞ = max
i∈[n]

n∑
j=1

|Mi,j |.

For all p ∈ [1,∞], |||·|||p is a matrix norm since for any A,B ∈Mn, one can bound:

|||AB|||p = sup
∥x∥p≤1

‖ABx‖p ≤ sup
∥x∥p≤1

|||A|||p ‖Bx‖p ≤ sup
∥x∥p≤1

|||A|||p |||B|||p ‖x‖p ≤ |||A|||p |||B|||p .

Lemma 5.6. Given a matrix norm ‖ · ‖ onMn, for any invertible matrix P ∈Mn, the norm ‖ · ‖′ defined
for any M ∈Mn as ‖M‖′ = ‖P−1MP‖ is also a matrix norm.

Proof. It is not hard to verify that ‖ · ‖′ is a norm, then for any A,B ∈Mn:

‖AB‖′ = ‖P−1ABP‖ = ‖P−1APP−1BP‖ ≤ ‖P−1AP‖‖P−1BP‖ = ‖A‖′‖B‖′.

4 Spectral radius
Definition 5.4. The spectral radius ρ(A) of a matrix A ∈Mp,n(C) is defined as:

ρ(A) = sup {|λ|, λ ∈ Sp(A)} .

When A ∈ Mp,n(R) ⊂ Mp,n(C), one still needs to look at the spectrum in C to compute the spectral
radius ρ(A) because the spectrum in R could be empty.

Be careful that the spectral radius is not a norm (ρ(A) = 0 6⇒ A = 0, see the lemma below)

Lemma 5.7. For any nilpotent matrix A ∈Mm(C), ρ(A) = 0.

Proof. Given x 6= 0 and λ ∈ C such that Ax = λx, we know that ∀k ∈ N, Akx = λkx. In particular, since
An = 0: λnx = Anx = 0 which implies λ = 0. Therefore Sp(A) = {0} and ρ(A) = 0.

Let us give some elementary properties on the spectral radius.

Lemma 5.8. Given a matrix A ∈Mn(C), an integer k ∈ N and a scalar α ∈ C:

ρ(A)k = ρ(Ak) and ρ(αA) = |α|ρ(A)

It is a simple consequence of the following lemma.

Lemma 5.9. Given a matrix A ∈Mn(C), an integer k ∈ N and a scalar α ∈ C:

Sp(Ak) =
{
λk, λ ∈ Sp(A)

}
and Sp(αA) = {αλ, λ ∈ Sp(A)}

Proof. We know from the Schur Theorem that there exist an invertible matrix P ∈ Mn(C) and an upper
triangular matrix T such that:

P−1AP = T =

λ1 (∗)
. . .

(0) λn

 ,

where λ1, . . . , λn ∈ C are n (possibly identical) eigenvalues of A. Note then that Sp(A) = {λ1, . . . , λn} =
Sp(T ) and it is immediate to see that Sp(αA) = Sp(αT ) = {αλ1, . . . , αλn} and Sp(Ak) = Sp(T k) =
{λk

1 , . . . , λ
k
n}.
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Let us now give a first connection between the spectral radius and matrix norms.

Lemma 5.10. Given a matrix A ∈Mp,n(C), ρ(A) ≤ ‖A‖ for any matrix norm ‖ · ‖.

Proof. There exists λ ∈ Sp(A) such that ρ(A) = |λ|, then Av = λv for some v ∈ Cm \ {0}. One can then
bound (recall that e1 ∈ Rn is the vector full of zero with a 1 at the first index):

ρ(A)‖veT1 ‖ = |λ|‖veT1 ‖ = ‖λveT1 ‖ = ‖AveT1 ‖ ≤ ‖A‖‖veT1 ‖,

which directly implies our result since veT1 6= 0.

Lemma 5.11. Given A ∈Mn(C) and ε > 0, there exists a matrix norm ‖ · ‖′ such that:

ρ(A) ≤ ‖A‖′ < ρ(A) + ε

Together with Lemma 5.10, this lemma implies:

Corollary 5.12. ∀A ∈Mn(C): ρ(A) = inf∥·∥, matrix norm ‖A‖.

Proof of Lemma 5.11. Applying the Schur triangularization to A we know that there exist U unitary and T
upper triangular such that:

A = UTU∗, with: T =


λ1 T1,2 . . . T1,n

0 λ2 T2,3
. . .

...
... . . . ...

0 0 . . . λm


For all m ∈ N, define a norm ‖ · ‖m followingly:

∀B ∈Mn(C) : ‖B‖m ≡
∣∣∣∣∣∣D−1

m U∗BUDm

∣∣∣∣∣∣
1

where : Dm = Diag( 1
m
, . . . ,

1

mn
)

where |||·|||1 is the matrix norm defined in Example 5.5 (for all M ∈ Mm(C)�|||M |||1 = supj∈[n]

∑n
i=1 |Mi,j |).

We know Lemma 5.6 that for any m ∈ N, ‖ · ‖m is a norm and:

‖A‖m =
∣∣∣∣∣∣D−1

m TDm

∣∣∣∣∣∣
1
=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


λ1 T1,2m

−1 . . . T1,nm
−n+1

0 λ2 . . . T2,mm−n+2

...
... . . . ...

0 0 . . . λm


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1

= max
(
|λ1|, |λ2|+

|T1,2|
m

, . . . , |λn|+
|T1,n|
m1−n

+ · · ·+ |Tn−1,n|
m

)
≤ ρ(A) +

|||T |||1
m

−→
m→∞

ρ(A).

Therefore, there exist m big enough such that:

ρ(A) ≤ ‖A‖m ≤ ρ(A) + ε.

Lemma 5.13. Given a matrix A ∈Mn:

lim
k→∞

Ak = 0 ⇐⇒ ρ(A) < 1

(the limit of sequence of matrices has been defined in Definition 5.2)
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Proof. Consider x ∈ Cn such that Ax = λx with ρ(A) = |λ|. One has:

ρ(A)k‖x‖ = |λ|k‖x‖ = ‖λkx‖ = ‖Akx‖ −→
k→∞

0,

thus ρ(A) < 1.
Let us now assume ρ(A) < 1 and set ε = 1−ρ(A)

2 . By Lemma 5.11, there exists a matrix norm such that
‖A‖′ ≤ ρ(A) + ε < 1, then:

‖Ak‖′ ≤ (‖A‖′)k ≤ (ρ(A) + ε)
k −→

k→∞
0,

since all the norms are equivalent in Mn, that means that Ak −→
k→∞

0.

Theorem 5.14. For any matrix norm ‖ · ‖, we have

ρ(A) = lim
k→∞

‖Ak‖ 1
k

Proof. On the first hand Lemmas 5.8 and 5.10 allow us to bound:

ρ(A) = ρ(Ak)
1
k ≤ ‖Ak‖ 1

k ,

and in particular ρ(A) ≤ lim infk→∞ ‖Ak‖ 1
k .

Given ε > 0, let us introduce Ã = A
ρ(A)+ε , then ρ(Ã) < 1 and by Lemma 5.13, there exists N such that

for all k > N :

‖Ak‖ ≤ ‖Ãk‖ (ρ(A) + ε)
k ≤ (ρ(A) + ε)k.

This inequality being true for any ε > 0, one finally obtains the inequality:

∀l ∈ N : lim sup
k→∞

‖Ak‖ 1
k ≤ ρ(A) ≤ lim inf

k→∞
‖Ak‖ 1

k .

In other words, limk→∞ ‖Ak‖ 1
k = ρ(A).

5 Positive matrices
We say that a matrix A ∈Mn(R) is entry-positive if all its entries are positive (i.e. if ∀i, j ∈ [n], Ai,j ≥ 0). Be
careful we will define later in this course the notion of symmetric positive matrices (resp. hermitian positive
matrices) which designates symmetric matrices (resp. hermitian matrices2) A ∈Mn(R) (resp. A ∈Mn(C))
such that ∀x ∈ Rn (resp. ∀x ∈ Cn), xTAx ≥ 0 (resp. x∗Ax ≥ 0). Given two matrices A,B ∈ Mn(R) we
further note A ≥ B if ∀i, j ∈ [n], Ai,j ≥ Bi,j and |A| = (|Ai,j |)i,j∈N ∈Mn(R+).

Lemma 5.15. Let A,B ∈Mn(C) such that A ≤ B entry-wise and B ≥ 0. Then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof. Since A ≤ |A| ≤ B, we have Ak ≤ |A|k ≤ Bk. This implies ‖Ak‖F ≤ ‖|A|k‖F ≤ ‖Bk‖F . By
Theorem 5.14, ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Given a matrix A ∈ Mn, we call a submatrix of A any matrix Â ∈ Mn such that there exist two index
sets I, J ⊂ [n] satisfying:

Âi,j =

{
Ai,j if i ∈ I and j ∈ J

0 otherwise.

Then the following corollary is a simple consequence of Lemma 5.15 applied with B = Â ≤ A.
2Recall that it means that A∗ = A.
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Corollary 5.16. Given an entry-positive matrix A ∈ Mn(R+) and Â ∈ Mn(R+), a submatrix of A, we
have ρ(Â) ≤ ρ(A).

Lemma 5.17. Given an entry-positive matrix A ∈ Mn(R+), if the row sums of A are equal, then3 ρ(A) =
‖A‖∞. If the column sums of A are equal, then ρ(A) = ‖A‖1.

Proof. If all the rows of A sum to ‖A‖∞, then A1 = ‖A‖∞1 and ‖A‖∞ ≤ ρ(A) but we know that ‖ · ‖∞ is a
matrix norm, therefore ‖A‖∞ ≥ ρ(A) thanks to Lemma 5.10 and finally ρ(A) = ‖A‖∞. If the columns are
equal, we obtain the same result considering AT since AT having same eigenvalues as A, ρ(A) = ρ(AT ) =
‖A‖1 (note that then the eigenvector associated to ρ(A) is not 1).

Lemma 5.18. Given an entry-positive matrix A ∈Mn(R+):

min
i

∑
j

Aij ≤ ρ(A) ≤ ‖A‖∞ = max
i

∑
j

Aij

Proof. Denote α = mini

∑
j Aij . If α = 0, then it is true. Suppose α > 0 and construct a matrix B ∈ Mn

such that:

Bi,· =
α∑n

j=1 Ai,j
Ai,·

where Ai,· (resp. Bi,·) is the i-th row of A (resp. of B). By Lemma 5.17, α = ρ(B) ≤ ρ(A).

Theorem 5.19. Given an entry-positive matrix A ∈ Mn(R+), for any x ∈ Rn
+ (with positive entries), we

have:

min
i∈[n]

1

xi

n∑
j=1

Ai,jxj ≤ ρ(A) ≤ max
i∈[n]

1

xi

n∑
j=1

Ai,jxj

Proof. Denoting S = diag(x) = diag(x1, x2, . . . , xm) one can conclude with Lemma 5.18 applied to S−1AS
since ρ(S−1AS) = ρ(A),.

Corollary 5.20. Given an entry-positive matrix A ∈ Mn(R+), x ∈ Rn
+ and α, β ≥ 0 one has the implica-

tions: {
αx ≤ Ax ≤ βx =⇒ α ≤ ρ(A) ≤ β,

αx < Ax < βx =⇒ α < ρ(A) < β.

Proof. Given i ∈ [n], one has:

∀i ∈ [n] :
1

xi

n∑
j=1

Ai,jxj =
(Ax)i
xi

≤ β,

in particular, Theorem 5.19 allows us to set that ρ(A) ≤ β and one can show similarly that α ≤ ρ(A). The
implication between strict inequalities, is shown the same way.

Corollary 5.21. Given an entry-positive matrix A ∈ Mn(R+), the eigenvectors with positive entries are
associated to the eigenvalue ρ(A).

Proof. Considering x ∈ Rn
+ such that Ax = λx, one knows that λ ∈ R+, Corollary 5.20 (and inequality

λx ≤ Ax ≤ λx) then allow us to conclude that λ ≤ ρ ≤ λ, in other words, ρ(A) = λ.
3Recall that ‖·‖∞ in the case of a entry-positive matrix is the max of the rows: ‖A‖∞ = maxi∈[n]

∑
j = 1nAi,j
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6 Perron Frobenus Theorem
The next three theorems are all results of the so-called Perron-Frobenius Theorem.

Theorem 5.22. Given a matrix A ∈Mn(R+) such that A > 0 and a vector x ∈ Rn \{0} such that Ax = λx
for some |λ| = ρ(A), we have the identity:

A|x| = ρ(A)|x| and |x| > 0

Note that this theorem implies:

1. ρ(A) is an eigenvalue of A,

2. ρ(A) > 0,

3. there is a positive eigenvector associated with ρ(A).

Proof of Theorem 5.22. Given Ax = λx with |λ| ≤ ρ(A), we have A|x| ≥ |Ax| = |λx| = ρ(A)|x|. If
A|x| > ρ(A)|x| then Corollary 5.20 would imply ρ(A) < ρ(A), which is impossible since ρ(A) ≥ maxi Aii > 0
by Corollary 5.16. Therefore, A|x| = ρ(A)|x| and ∀i ∈ [n]: |x|i = 1

ρ(A)

∑n
j=1 Ai,j |x|j > 0 since |x| 6= 0 and

A > 0.

Lemma 5.23. Given a matrix A ∈ Mn(R+) such that A > 0, λ ∈ C and x ∈ Cn \ {0} such that Ax = λx
with |λ| = ρ(A), then for some θ ∈ R, eiθx = |x| > 0.

Proof. The triangular inequality of the modulus provides:

∀i ∈ [n] : |Axi| =

∣∣∣∣∣∣
m∑
j=1

Aijxj

∣∣∣∣∣∣ ≤
m∑
j=1

Aij |xj | = (A|x|)i (5.4)

Besides:

|Ax| = |λ||x| = ρ(A)|x| = A|x|,

where the last equality is a consequence of Theorem 5.22. Therefore the triangular inequality in (5.4) is
reached, which implies that there exists θ ∈ R such that for all i ∈ [n], xi = eθi|xi|.

Theorem 5.24. Given a matrix A ∈Mn(R+) such that A > 0, {λ ∈ Sp(A), |λ| = ρ(A)} = {ρ(A)}.

Proof. Suppose we have a λ such that |λ| = ρ(A) and Ax = λx for some x ∈ Cn \ {0}. By Lemma 5.23,
there exists w = eiθx ≥ 0. Then:

Aw = eiθAx = λ(eiθx) = λw,

and by Corollary 5.21, λ = ρ(A).

Theorem 5.25. Given a matrix A ∈Mn(R+) such that A > 0, dim(Ker(A− ρ(A)In) = 1.

Proof. Suppose we have Aw = ρ(A)w, Az = ρ(A)z and w 6= 0, z 6= 0. By Lemma 5.23, there exist θ, σ ∈ R
such that, if one notes ω = eθiw and ζ = eσiz:

Aω = ρ(A)ω Aζ = ρ(A)ζ and ω, ζ > 0.

Let us then denote α = mini∈[n]
ωi

ζi
and set x = ω − αζ. Then Ax = Aω − αAζ = ρ(A)x, which implies

x = 0 because if x 6= 0, then Theorem 5.22 would imply x > 0 which is impossible since xi = 0. Therefore,
ω = αζ, which means z and p are aligned (in Cn), and dim(Ker(A− ρ(A)In) = 1.
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7 Application to Page Rank algorithm
In the context of the PageRank algorithm, the original matrix A ∈ Mn(R+) is column-stochastic (i.e. all
the columns sum to 1) but may not be strictly positive due to zero entries. To address this and create a
problem with a unique solution, consider the following approach:

Define S = 1
n11

T ∈ Mn(R+), it is clear that S is positive and column-stochastic. Given α ∈ (0, 1), we
introduce the matrix:

Â(α) = (1− α)A+ αS.

We know from Lemma 5.17 that ρ(A) = 1 and Theorem 5.25 implies the existence of a unique positive
eigenvector û such that ‖u‖1 = 1 and corresponding to the eigenvalue ρ(A) = 1. The relationship is described
as:

û = Â(α)û = (1− α)Aû+ αSû = (1− α)Aû+
α

n
1
T .

Considering a vast set of documents, such as the internet, the fraction α
n becomes negligible. Hence, the

vector û approximates an eigenvector u of the original matrix A with Au ≈ u. Solving for û in Â(α)û = û
serves as a practical solution to finding u, and this problem can be solved with the power method presented
in Section 2.
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Lecture 6

Symmetric / Hermitian matrices and
their eigenvalues

1 General properties and definitions
Definition 6.1. A matrix A ∈ Mn(R) is said to be symmetric iif. AT = A. A matrix H ∈ Mn(C) is said
to be Hermitian iif. H∗ = H. We will note Hn the set of Hermitian matrices ofMn(C).

Note that if A ∈ Mn(R) is hermitian, then it is symmetric, therefore, some of the coming properties
expressed only for Hermitian matrices are also valid for such symmetric matrices A.

Proposition 6.1. The eigenvalues of a Hermitian matrix are real values.

Proof. Considering A ∈ Hn, if there exist v ∈ Cn, λ ∈ C such that Av = λv, then:

λv∗v = v∗Av = v∗A∗v = λ∗v∗v

which implies λ = λ∗ since v 6= 0, hence λ is real valued.

Proposition 6.2. Given λ1, λ2, 2 eigenvalues of a hermitian matrix A ∈ Hn, if λ1 6= λ2 the eigenspaces
Eλ1 = ker(A− λ1In), Eλ2 = ker(A− λ2In) are orthogonal.

Proof. Given v1 ∈ Eλ1 and v2 ∈ Eλ2 , one has the identities:

v∗1Av2 = λ2v
∗
1v2 and v∗1Av2 = (A∗v1)

∗v2 = (Av1)
∗v2 = λ∗

1v
∗
1v2 = λ1v

∗
1v2

One then obtains the equality (λ1 − λ2)v
∗
1v2 = 0 which directly implies v∗1v2 = 0 since λ1 6= λ2.

Theorem 6.3. Any Hermitian matrix is diagonalizable with unitary matrices.

Proof. By Schur Triangulation, there exist U ∈ Mn(C) unitary (U∗ = U−1) and T ∈ Mn(C) such that
A = U∗TU . One then has the identity:

T ∗ = UA∗U∗ = UAU∗ = T,

which implies T diagonal since T is upper triangular and T ∗ is lower triangular.

Definition 6.2. A matrix A ∈ Hn is positive semi-definite (PSD) iif

∀x ∈ Cn : x∗Ax ≥ 0.

It is positive definite (PD) iif:

∀x ∈ Cn \ {0} : x∗Ax > 0.

We denote A � 0 or A � 0 for A ∈ Hn respectively PSD and PD.
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Example 6.4. • (Covariance Matrix): Given a random vector Y ∈ Cn such that E[Y ] = 0 we denote
RY its covariance, it is defined as:

RY ≡ E[Y Y ∗]

The covariance is PSD as for any x ∈ Cn: x∗RY x = x∗E[Y Y ∗]x = E[x∗Y Y ∗x] = E[|Y ∗x|2] ≥ 0.

• (Hessian Matrix) Given a function f : Rn → R, we denote the gradient vector:

∇f(x) =


∂f(x)
∂x1...

∂f(x)
∂xn

 ∈ Rn,

and the Hessian matrix:

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
i,j∈[n]

∈Mn(R)

A well known theorem sets that ∇2f(x) is symmetric if f is twice differentiable and continuous (we say
that f is of class C2). More over ∇2f(x) is PSD iif. f is a convex function. For instance, considering
f : x 7→ x∗Ax+ 2bTx+ c (f is a quadratic function), one can compute:

∇f(x) = 2Ax+ 2b and ∇2f(x) = 2A.

If A is PSD, f(x) is convex.

• (Ellipsoid) Consider the ellipsoid, which is the set of points x = (x1, x2) ∈ R2 such that:(
x1

a1

)2

+

(
x2

a2

)2

≤ 1,

where a1 and a2 denote the shape of the ellipsoid. This can be written in matrix form as

xT

(
1
a2
1

0

0 1
a2
2

)
x ≤ 1.

In dimension n, given any P ∈ Mn(Rn) PD, the set E = {x ∈ Rn | xTPx ≤ 1} defines an ellipsoid.
With the eigenvalue decomposition of P : P = V ΛV T with V orthogonal and Λ diagonal, we have

xTPx = xTV ΛV Tx = zTΛz,

where z = V Tx is a rotation of x.

Proposition 6.5. If A is PSD, then any principal submatrix1 is PSD.

As a consequence any square diagonal block of a PSD matrix is PSD (in particular the diagonal entries
are positive).

Proof. Given I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, for any x ∈ Ck, we introduce x̃ ∈ Cn such that ∀l ∈ [k],
x̃il = xl, and ∀i /∈ {i1, . . . , ik}, xi = 0. One can then express:

x∗AIx = x̃∗Ax̃ ≥ 0.

1A principal supmatrix of A ∈ Mn(C), is any matrix written AI = (Ai,j)i,j∈I ∈ Mk(C), where I = {i1, i2, . . . , ik} ⊆
{1, 2, . . . , n}.
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2 Root of Hermitian matrices
Problem 6.6. Given µ ∈ Rn and Σ ∈ Sn, PD, we denote X ∼ N (µ,Σ) if the random vector X ∈ Rm

follows a multivariate Gaussian distribution with probability density function given by:

ϕ(x) =
1

(2π)
m
2 det(Σ) 1

2

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
note then that µ = E[x] and Σ = E[(x− µ)(x− µ)T ].

One can show easily that X − µ ∼ N (0,Σ) and has a density:

ϕ(x) =
1

(2π)
m
2 det(Σ) 1

2

exp
(
−1

2
xTΣ−1x

)
.

Question: Does there exist S ∈Mn(C) such that S(X − µ) ∼ N (0, In) ?
Thanks to Theorem 6.8 settled below, we can consider S ≡ Σ− 1

2 , one can then note that for any bounded
mapping f : Rn → R:∫

Rn

f(S(x− µ))ϕ(x)dx =

∫
Rn

f(S(x− µ))

(2π)
m
2 det(Σ) 1

2

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
dx

=

∫
Rn

f(y)

(2π)
m
2

exp
(
−1

2
yT y

)
dy

thanks to the change of variable: {
y = Sx+ µ

dy = det(S)dx = det(Σ)− 1
2 dx.

We see that the density of S(X − µ) is the same as the density of a Gaussian random vector with zero mean
and identity covariance matrix.

Theorem 6.8 setting the existence and uniqueness of S in the previous problem requires the following
property in order to set the uniqueness.

Proposition 6.7. Given two Hermitian matrices A,B ∈ Hn, if AB = BA, then there exist a unitary matrix
U ∈Mn(C) such that U∗AU and U∗BU are both diagonal. One says that A and B are co-diagonalizable.

Proof. Let us consider λ1, . . . , λk, k distinct eigenvalues of B such that Sp(B) = {λ1, . . . , λk}, we further
denote for all i ∈ [k], Ei ≡ ker(A−λiIn), the eigenspace associated to λi, and v

(i)
1 , . . . , v

(i)
di

an orthogonal basis
of the eigenspace Ei, where of course di = dim(Ei). Noting V = (v

(1)
1 , . . . , v

(1)
d1

, . . . , v
(k)
1 , . . . , v

(k)
dk

) ∈Mn(C),
we know that V is unitary and diagonalizes B:

V ∗BV =



λ1

. . .
λ1

. . .
λk

. . .
λk


Given i ∈ [k] and any v ∈ Ei, the commutation hypothesis allows us to set BAv = ABv = λiAv. We see
that Av ∈ Ei, thus, there exist k matrices A1, . . . , Ak such that:

V ∗AV =

A1 (0)
. . .

(0) Ak

 ,
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and since (V ∗AV )∗ = V ∗A∗V , we know A1, . . . , Ak are all hermitian. Therefore for all i ∈ [k], there
exists a unitary matrix Ui ∈ Mn such that U∗

i AiUi = Di where Di is diagonal. Let us then introduce the
unitary matrix:

U ≡

U1 (0)
. . .

(0) Uk

 , note that: U∗ ≡

U∗
1 (0)

. . .
(0) U∗

k


Then we have naturally the identities:

U∗V ∗AV U =

D1 (0)
. . .

(0) Dk


U∗V ∗BV U =

U∗
1 (λ1Id1

)U1 (0)
. . .

(0) U∗
k (λkIdk

)Uk

 =

λ1Id1
(0)

. . .
(0) λkIdk

 ,

this is exactly what we wanted to prove since V U is unitary ((V U)∗V U = U∗V ∗V U = In).

Theorem 6.8. Given an hermitian matrix A ∈ Hn PSD, and k ∈ N, there exists a unique matrix B ∈ Hn

such that Bk = A. We denote B = A
1
k .

Proof. The existence is straight forward. We know that there exits U ∈ Mn(C) such that U∗AU = Λ with
Λ = Diag(λ1, . . . , λn) and λ1, . . . , λn ≥ 0. One can then introduce B = UDiag(λ

1
k
1 , . . . , λ

1
k
n )U∗ = UΛ

1
kU∗. It

satisfies Bk = (UΛ
1
kU∗)k = UΛU∗.

To show the uniqueness, let us assume there exists a second matrix C ∈Mn such that Ck = A. Assuming
that Sp(A) = {µ1, . . . , µl}(= {λ1, . . . , λn}) with µ1, . . . , µl all different from one another, let us introduce
the polynomial:

P (X) =

l∑
i=1

µ
1
k
i

(X − µ1) · · · (X − µi−1)(X − µi+1) · · · (X − µl)

(µi − µ1) · · · (µi − µi−1)(µi − µi+1) · · · (µi − µl)
.

Note that for all i ∈ [l] P (µl) = µ
1
k

l . With this choice:

P (A) = UP (Λ)U∗ = U

P (λ1) (0)
. . .

(0) P (λn)

U∗ = U


λ

1
k
1 (0)

. . .
(0) λ

1
k
n

U∗ = B

Now, since Ck = A we see that B = P (A) = P (Ck) commutes with C as a polynomial of C. Therefore, by
Proposition 6.7, there exists V ∈Mn(C), unitary, such that:

V ∗BV = ΓB and V ∗CV = ΓC

with ΓB ,ΓC ∈Mn(R+), both diagonal. Now:

Γk
B = V ∗BkV = V ∗AV = V ∗CkV = Γk

C ,

thus, by uniqueness of the kth root in R+, we deduce that ΓC = ΓB and, as a consequence B = C, the kth

root of A is unique.
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3 Order relation and minmax formulas for eigenvalues
Let us introduce in the set of hermitian matrices the following order relation:

A � B ⇐⇒ A−B � 0

We present below a set of important properties to deal with these inequalities.

Lemma 6.9. We consider A,B,C ∈ Hn, α ∈ C and we note λ1(A), . . . , λn(A) the eigenvalues of A:

1. If A � 0, α ≥ 0 then αA � 0.

2. If A � 0, B � 0 then A+B � 0.

3. If A � B,B � C then A � C.

4. Given any invertible matrix2 P ∈ Mp,n: P ∗AP � B =⇒ A � P−∗BP−1 and P ∗AP � B =⇒ A �
P−∗BP−1.

5. A � B � 0 ⇐⇒ 0 ≺ A−1 � B−1.

6. If A � In, then λi(A) ≥ 1 ∀i = 1, . . . ,m.

Proof. 4. If P ∗AP � B, for all y ∈ Cn, y∗(P ∗AP −B)y ≥ 0 and in particular, for any x ∈ Cn, replacing
y with P−1x, one obtains:

0 ≤ (P−1x)∗(P ∗AP −B)P−1x = x ∗ (A− P−∗BP−1)x

The second inequality is just proven with strict inequalities replacing large inequalities.

5. Let us first treat the case B = In. Let us decompose thanks to Theorem 6.8: A = A
1
2A

1
2 with A

1
2

invertible. One can then deduce from Item 4 (and the fact that A∗ = A is invertible):

A � In ⇐⇒ A
1
2 InA

1
2 � In ⇐⇒ In � A− 1

2 InA
− 1

2 ⇐⇒ In � A−1.

In the general case, if we assume A � B, then Theorem 6.8, Item 4 and the upper result imply:

A−B = A
1
2 (In −A− 1

2BA− 1
2 )A

1
2 � 0 ⇐⇒ In � A− 1

2BA− 1
2

⇐⇒ A
1
2B−1A

1
2 � In ⇐⇒ B−1 � A−1.

6. Let us decompose A = V ∗ΛV with V unitary and Λ diagonal. We have Λ � V −∗InV
∗ � In thanks to

Item 4 thus λi(A)− 1 ≥ 0 ∀i ∈ [n].

Looking at the last result, one is tempted to ask what would happen if one replaces In with a matrix
B ∈ Hn. Denoting λ1(B) ≤ . . . ≤ λn(B) the ordered list of the eigenvalues of B, do we have

A � B =⇒ λi(A) ≥ λi(B) ∀i = 1, . . . ,m ?

The answer is yes but one will need supplementary results to provide a proof.

Theorem 6.10 (Rayleigh-Ritz). Given A ∈ Hn then

λmax(A) = max
x∈Cn

x∗Ax

x∗x
s.t. ‖x‖2 = 1

λmin(A) = min
x∈Cn

x∗Ax

x∗x
s.t. ‖x‖2 = 1

2Recall that P−∗ = (P ∗)∗.
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Proof. Let us decompose A = V ΛV ∗ where V = [v1, . . . , vn] is unitary and Λ = diag(λ1, . . . , λn) with
λ1 ≤ · · · ≤ λn. First we know that:

v∗nAvn
v∗nvn

= λn = λmax(A) and v∗1Av1
v∗1v1

= λ1 = λmin(A).

We now want to show that vn and v1 respectively maximize and minimize the functional x 7→ x∗Ax
x∗x . It is

merely sufficient to bound:

x∗Ax = x∗V ΛV ∗x =

n∑
i=1

λi|v∗i x|2

≤ λmax(A)

n∑
i=1

|v∗i x|2 = λmax(A)x∗V V ∗x = λmax(A)‖x‖22,

and one can check similarly that ∀x ∈ Cn, λmin(A)‖x‖22 ≤ x∗Ax.

Given a matrix A ∈ Hn, we will note in what follows:

λ1(A), . . . , λn(A), with λ1(A) ≤ · · · ≤ λn(A),

the ordered list of eigenvalues of A.
Theorem 6.11 (Courant–Fischer). Let A ∈Mn be Hermitian and k ∈ [n]:

λk = min
dim S=k

max
x∈S∗

x∗Ax

x∗x
(6.1)

and
λk = max

dim S=n−k+1
min
x∈S∗

x∗Ax

x∗x
. (6.2)

Proof. Let x1, . . . , xn ∈ Cn be orthonormal and such that Axi = λixi for each i = 1, . . . , n. Let S be any
k-dimensional subspace of Cn and let S′ = span{xk, . . . , xn}. Then

dimS + dimS′ = k + (n− k + 1) = n+ 1

therefore {x : 0 6= x ∈ S ∩ S′} is nonempty. One can then bound:

sup
∥x∥=1
x∈S

x∗Ax

x∗x
≥ sup

∥x∥=1
x∈S∩S′

x∗Ax

x∗x
≥ inf

∥x∥=1
x∈S∩S′

x∗Ax

x∗x
≥ inf

∥x∥=1
x∈S′

x∗Ax

x∗x
= min

∥x∥=1
x∈S′

x∗Ax

x∗x
= λk

which implies that

inf
dim S=k

sup
x:∥x∥=1

x∈S

x∗Ax

x∗x
≥ λk.

However, span{x1, . . . , xk} contains the eigenvector xk, span{x1, . . . , xk} is one of the choices for the
subspace S, and x∗Ax

x∗x = λk when x = xk, so the inequality above is actually an equality in which the
infimum and supremum are reached:

inf
dim S=k

sup
∥x∥=1
x∈S

x∗Ax

x∗x
= λk

The second identity follows from applying the first result to −A:

−λk = min
dim S=n−k+1

max
∥x∥=1
x/∈S

x∗(−A)x

x∗x
= min

dim S=n−k+1
max

(
−x∗Ax

x∗x

)
= −

 max
dim S=n−k+1

min
∥x∥=1
x/∈S

x∗Ax

x∗x


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Theorem 6.12 (Weyl). Let A,B ∈ Hn:

∀k ∈ [n] : λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B).

Proof. Using the fact that x∗Ax+ x∗Bx = x∗(A+B)x and that for any x ∈ Cn \ {0}:

λ1(B) ≤ x∗Bx

‖x‖2
≤ λn(B),

one has the inequality:

x∗Ax

‖x‖2
+ λn(B) ≤ x∗Ax

‖x‖2
+

x∗Bx

‖x‖2
≤
(
x∗Ax

‖x‖2

)
+ λn(B)

Composing on the left by mindim(S)=k max x∈S
x ̸=0

, one obtains thanks to Theorem 6.11:

λk(A) + λ1(B) ≤ λk(A+B) ≥ λk(A) + λn(B)

Corollary 6.13. Given two Hermitian matrices A,B ∈ Hn:

A � B =⇒ ∀i ∈ [n] : λi(A) ≥ λi(B),

where λ1(A) ≤ · · · ≤ λn(A) (resp. λ1(B) ≤ · · · ≤ λn(B)) are the ordered list of eigenvalues of A (resp. B).

Proof. If A � B, then A−B � 0 and we have λi(A−B) ≥ 0 for i = 1, . . . , n and therefore:

λi(A) = λi(A+B −B) ≥ λi(B) + λ1(A−B) ≥ λi(B)

We will use a lot the following identity valid for a given A ∈ Hn and i ∈ [n]:

λi(A) = −λn−i+1(−A). (6.3)

Proposition 6.14. Let A,B ∈ Hn, we have the following properties:

1. (Interlacing) Given any z ∈ Cn, k ∈ {2, . . . , n}:

λk−1(A) ≤ λk(A± zz∗) ≤ λk+1(A)

2. If rank(B) ≤ r , k ∈ {r + 1, . . . , n− r} we have:

λk−r(A) ≤ λk(A+B) ≤ λk+r(A)

3. For any index set I = {i1, . . . , ir} ⊆ {1, 2, . . . , n},

λk−(n−r)(A) ≤ λk(AI) ≤ λk+n−r(A)

4. For any semi-unitary matrix3 U ∈Mn,r(C),

λk−n+r(A) ≤ λk(U
∗AU) ≤ λk(A)

5. Given j, k ∈ [n]:
λj+k−n(A+B) ≤ λj(A) + λk(B) ≤ λj+k−1(A+B)

3A matrix with orthonormal columns (but possibly r 6= n so it is not a square matrix).
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Proof. 1. We know from Theorem 6.11 that:

λk(A± zz∗) = min
dim S=k

max
x∈S

x∗(A± zz∗)x

‖x‖2
≥ min

dim S=k
max

x∈S∩{z}⊥

x∗(A+ zz∗)x

‖x‖2

Now for all subspace S ⊂ Cn, dimS = k, there exists a subset S⊥z ⊂ S such that dimS⊥z = k − 1
and S⊥z ⊥ z. Then:

λk(A± zz∗) ≥ min
dim S=k

max
x∈S⊥z

x∗Ax

‖x‖2
= min

S′s.t.∃S:
dim(S)=k,S′=S⊥z

max
x∈S′

x∗Ax

‖x‖2
≥ min

dim S=k−1
max
x∈S

x∗Ax

‖x‖2

2. If Rk(B) ≤ r, given the eigenvalue decomposition B =
∑r

i=1 λi(B)uiu
∗
i , then:

λk(A+B) = λk

(
A+

r∑
i=1

λi(B)uiu
∗
i

)
≥ λk−1

(
A+

r−1∑
i=1

λi(B)uiu
∗
i

)
= · · · = λk−r(A)

3. Recall that AI = (Ai,j)i,j∈I ∈Mr(C). We already know from Proposition 6.5 that A

Let us introduce the mapping ϕI : Cr 7→ Ckn such that for all x ∈ Cr, ∀k ∈ [r], ϕI(x)ik = xl and
for all i ∈ [n] \ I, ϕI(x)i = 0. One can then express thanks to Courant Fischer Theorem that for any
k ∈ [r]:

λk(AI) = min
S⊂Cr

dim S=k

max
x∈S,x ̸=0

x∗AIx

‖x‖2
= min

S⊂Cr
dim S=k

max
x∈S,x ̸=0

ϕI(x)
∗AϕI(x)

‖ϕI(x)‖2

= min
S⊂Cr

dim S=k

max
x∈ϕI(S),x ̸=0

x∗Ax

‖x‖2
= min

S′⊂Cn,∃S∈Cr :
dim S=k,S′=ϕI (S)

max
x∈S′,x ̸=0

x∗Ax

‖x‖2

≤ min
S′⊂Cn,

dim S=k+n−r

max
x∈S′,x ̸=0

x∗Ax

‖x‖2
= λk+n−r(A)

To prove the other equality let us note that for l = n− k + 1 and A = −A′, one has (multiplying the
two sides of the inequality by (−1)):

−λ2n−l−r+1(−A) ≤ −λn−l+1(AI),

which provides, thanks to (6.3):

λl+r−n(A) ≤ λl(AI)

4. Let us complete the orthonormal family induced by the r columns of U = (u1, . . . , ur) with n−k vectors
(v1, . . . , vn−k). W = (u1, . . . , ur, v1, . . . , vn−r) unitary. Introducing the matrix V = (v1, . . . , vn−k), one
knows that the block matrix ( U V ) is unitary and one can bound thanks to Item 3:

λk+n−r(A) = λk+n−r(W
∗AW ) = λk+n−r(( U V )∗A( U V )) = λk+n−r(( U∗AU U∗AV

V ∗AU V ∗AV
)) ≥ λk(U

∗AU),

thanks to Item 3. The other inequality is proven the same way thanks to Item 3.

5. Given A,B ≥ 0, we have the eigenvalue decomposition

A =

n∑
i=1

λi(A)ui(A)ui(A)∗ and B =

n∑
i=1

λi(B)ui(B)ui(B)∗.

Defining Aj as

Aj =

n∑
i=j+1

λi(A)ui(A)ui(A)∗ and Bk =

n∑
i=k+1

λi(B)ui(B)ui(B)∗
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we can show that

λj(A) = λn(A−Aj) and λk(B) = λn(B −Bk).

Now, since Rk(Aj −Bk) ≤ 2n− j − k we know from Item 2:

λj(A) + λk(B) = λn(A−Aj) + λn(B −Bk) ≥ λn(A−Aj +B −Bk)

= λn(A+B − (Aj −Bk)) ≥ λj+k−n(A+B).

One can deduce from the first result the sequence of implications and (6.3):

−λj+k−n(A+B) ≥ −λj(A)− λk(B) =⇒ λ2n−j−k+1(−A−B) ≥ λn−j+1(−A) + λn−k+1(−B)

which implies that for all A,B ∈ Hn and any j, k ∈ [n]:

λj+k−1(A+B) ≥ λj(A) + λk(B)

4 Applications
4.1 Principal component analysis (PCA)
Consider an p × n data matrix X = (x1, . . . , xn) ∈ Mp,n. Each of the n columns represents a different
repetition of the experiment, and each of the p rows could be a particular kind of feature. PCA transforms
the data into a new coordinate system through a linear transformation.

The transformation is defined by a family of l orthonormal weight vectors (w1, . . . , wl), and maps each
column vector xi of X to a new vector of principal component scores ti ∈ Rl, where l is generally less than
p to reduce dimensionality. These scores are given for all i ∈ [n] by:

ti = WTxi with : W ≡ (w1, . . . , wl) ∈Mp,l(R).

this way, one would go from a matrix X of size p × n to a matrix T = (t1, . . . , tn) of size k × n. The
score vectors t1, . . . , tn are seen as n drawings of the same law. One then construct each of the wi with the
objective to maximize the empirical variance of each of the entries of the score vector ti. This condition
rewrites for the first weight vector:

w1 = arg max
w∈Rp
∥w∥=1

1

n

n∑
i=1

(wTxi − wT x̄)2 with: x̄ =
1

n

n∑
i=1

xi.

with the assumption x̄ = 0 this identity rewrites:

w1 = arg max
w∈Rp
∥w∥=1

1

n

n∑
i=1

wTxix
T
i w = arg max

w∈Rp
∥w∥=1

1

n
wTXXTw.

One recognizes here the Rayleigh quotient of the “sample covariance” 1
nXXT and can deduce that w1 ∈ Rp

is the eigenvector associated to the biggest eigenvalue of 1
nXXT ∈Mp.

Subsequent components are found by subtracting the contribution of the previous components and finding
the weight vector that extracts maximum variance from this new data matrix:

∀k ∈ [l] : Wk = arg max
∥w∥=1

{
wTX̂T

k X̂kw

wTw

}
where : X̂k = X −

k−1∑
s=1

wsw
T
sX

The full PCA decomposition of X is then given by T = XW , where W is a matrix of weights whose
columns are the eigenvectors associated to the l biggest eigenvalues of the sample covariance matrix 1

nX
TX.
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4.2 Spectral analysis - MUSIC
Consider a complex time sequence

yt =

k∑
l=1

αl · ei2πflt + wt, t = 0, 1, . . . , T − 1

where ∀l ∈ [k], αl ∈ C are complex coefficients and fl ∈ [0, 1) are the frequencies of the sinusoidal components.

Goal: Estimate{fl}kl=1 from {yt}T−1
t=0

This can be done by applying the Discrete Fourier Transform (DFT), but its resolution is limited by 1
T . To

achieve a super-resolution, a subspace-based approach is proposed.
Given a time window d ≥ k, we define:

∀t ∈ [T − d] : Y
(d)
t =


yt

yt+1

...
yt+d−1

 , W
(d)
t =


wt

wt+1

...
wt+d−1

 and D = Diag(α1, . . . , αk)

.
For all l ∈ [k], denote zl = ei2πfl , then given d ≥ k

Y
(d)
t =


yt

yt+1

...
yt+d

 =

k∑
i=1

αi


zti

zt+1
i
...

zt+d
i

+W
(d)
t =


1 1 · · · 1
z1 z2 · · · zk
...

... . . . ...
zd−1
1 zd−1

2 · · · zd−1
k



α1z

t
1

α2z
t
2

...
αkz

t
k

+W
(d)
t .

Given an exponent p ∈ N we introduce the Vandermonde matrix:

V(p) ≡


1 1 · · · 1
z1 z2 · · · zk
...

... . . . ...
zp−1
1 zp−1

2 · · · zp−1
k


Then one has the matricial identity Y = V(d)DV ∗

(T−D) +W with:

Y = (Y
(d)
0 , . . . , Y

(d)
T−d) =

 yt · · · yt+T

...
...

yt+d−1 · · · yt+T+d−1


W = (W

(d)
0 , . . . ,W

(d)
T−d) =

 wt · · · wt+T

...
...

wt+d−1 · · · wt+T+d−1

 .

Proposition 6.15. If the scalars z1, . . . , zk are all distinct from one another then the Vandermonde matrix
V(p) ∈Mp,k, has a rank equal to min{p, k}.

Proof. To prove this, it’s sufficient to consider an l × l submatrix of V(p) with l ≤ min{d, k}:

Vl ≡


1 1 . . . 1
z1 z2 . . . zl
...

... . . . ...
zl−1
1 zl−1

2 . . . zl−1
l

 ∈Ml(C)
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Assume that we are given x ∈ Cl such that

0 = V T
l · x =


∑l

i=1 xiz
i−1
1

...∑l
i=1 xiz

i−1
l

 .

This implies that the z1, . . . , zl are roots of a polynomial p(z) = x1+x2z+ · · ·+xlz
l−1 which has degree less

than k. It means that this polynomial is equal to zero and therefore x = 0 and the the matrix Vl is injective
thus invertible.

Denoting for simplicity Td ≡ T − d, one can define an analogous to the sample covariance matrix (but
here there is no independence between the columns) as:

Ry =
1

Td
Y Y ∗ =

1

Td

(
V(d)DV ∗

(Td)
+W

)(
V(d)DV ∗

(Td)
+W

)∗
≈ Φ+

σ2

Td
Id (6.4)

where σ2 is the noise power, and Φ ≡ 1
Td

V(d)DV ∗
(Td)

V(Td)D
∗V ∗

(d) ∈ Md(C) is a positive definite matrix of
rank k.

Let us introduce the eigenvalue decomposition Ry = U∗ΛU , with U unitary and Λ = Diag(λ1, . . . , λd)
diagonal with positive entries in increasing order λ1 ≤ · · · ≤ λd. Since Rk(Φ) = k, one can estimate:

Φ ≈ U∗ΛU − σ2

Td
Id =

(
U∗
n U∗

s

)
Diag

 0, . . . , 0︸ ︷︷ ︸
n−k times

, λd−k+1 −
σ2

Td
, . . . , λn −

σ2

Td

(Un

Us

)

= U∗
s Diag

(
λd−k+1 −

σ2

Td
, . . . , λn −

σ2

Td

)
Us,

where we introduced the block decomposition U = ( Un

Us
) with Un ∈ Md−k,d and Us ∈ Mk,d. Of course, U

being unitary, UsU
∗
n = 0 and therefore:

1

Td
UnV(d)DV ∗

(Td)
V(Td)D

∗V ∗
(d)U

∗
n = UnΦU

∗
n ≈ UnU

∗
s Diag

(
λd−k+1 −

σ2

Td
, . . . , λn −

σ2

Td

)
UsU

∗
n = 0.

That means, since DV ∗
(Td)

V(Td)D
∗ ∈Mk(C) is of full rank, that:

0 ≈ UnV(d)V
∗
(d)U

∗
n =

k∑
l=1

‖U∗
na(fl)‖

2
,

where, ∀l ∈ [k], ∀f ∈ [0, 1), we introduced:

a(f) ≡

 1
...

z(f)d

 ∈ Cd, with z(f) ≡ ei2πf .

In order to pick suited frequencies f1, . . . , fk, one therefore needs to:

1. Choose appropriate k ≤ d (no precise method to optimally choose k),

2. Introduce Un ∈ Md,n−k, a unitary matrix having as column an orthonormal basis of eigenvectors
associated to the n− k lowest eigenvalues of Ry,

3. Pick k frequencies such that ‖Una(f)‖ is the closest possible to zero.

This last step is solved looking at the maximum of the mapping depicted on Figure 6.1.
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Figure 6.1: With this frequency selection graph, one is tempted to chose ∀l ∈ [k], zl = ei2πfl .
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Lecture 7

QR decomposition and applications.

1 Result and implementation
1.1 Existence and uniqueness
Theorem 7.1. Let A ∈Mn,m be given.

1. If n ≥ m, there is a Q ∈ Mn,m with orthonormal columns and an upper triangular R ∈ Mm with
nonnegative main diagonal entries such that A = QR.

2. If rank A = m, then the factors Q and R in 1. are uniquely determined and the main diagonal entries
of R are all positive.

3. If m = n, then the factor Q in 1. is unitary.

4. There is a unitary Q ∈Mn and an upper triangular R ∈Mn,m with nonnegative diagonal entries such
that A = QR.

5. If A is real, then the factors Q and R in 1. 2. 3. 4. may be taken to be real.

Only the second item will be proven, the uniqueness part relies on the following well known lemma.

Lemma 7.2. The inverse of an invertible upper (resp. lower) triangular matrix is also upper (resp. lower)
triangular.

Proof. Let us consider R ∈ Mn(C), upper triangular. Denoting D ∈ Mn(C), the diagonal matrix having
the same diagonal entries as R, one can decompose R = (In + N)D where N ∈ Mn(C) satisfies ∀j ≤ i,
Ni,j = 0. One verifies easily that N is nilpotent, in particular Nn = 0. Let us then compute:

RD−1
(
In −N +N2 −N3 + · · ·+ (−1)n−1Nn−1

)
= (In +N)

(
In −N +N2 −N3 + · · ·+ (−1)n−1Nn−1

)
= In +N −N +N2 −N2 + · · ·+Nn−1 −Nn−1 +Nn = In,

One can then conclude that D−1
(
In −N + · · ·+ (−1)n−1Nn−1

)
is the inverse of R, note that it is upper

triangular as a sum of a product of upper triangular matrices.

Proof of Theorem 7.1, Item 2. Let us note x1, . . . , xm the columns of X, we know that those vectors form
a linearly independent family of Cn since X is invertible. To show the existence of Q,R, let us invoke the
Gram-Schmidt orthonormalizing process that ensures the existence of a orthonormal family q1, . . . , qm inCn
such that for all k ∈ [m]:

xk ∈{q1, . . . , qk} .
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In other words, for all k ∈ [m], there exists k scalars α1,k, . . . , αk,k such that:

xk =

k∑
i=1

αi,kqi. (7.1)

Introducing the unitary matrix Q ≡ (q1, . . . , qm) and the upper triangular matrix R ∈Mm satisfying for all
j < i, Ri,j = 0 and for all j ≥ i, Ri,j = αi,j , (7.1) rewrites matricially X = QR. Then setting:

D = Diag
(

Ri,i

|Ri,i|

)
i∈[m]

,

(R as A is invertible, therefore, ∀i in[n], Ri,i 6= 0), Q′ ≡ QD̄−1 and R′ ≡ D̄R, the decomposition A = Q′R′

satisfies the requirement of the decomposition.
Suppose that A = QR = Q̃R̃, in which R and R̃ are upper triangular and have positive main diagonal

entries, and Q and Q̃ have orthonormal columns. Then A∗A = R∗(Q∗Q)R = R∗IR = R∗R and also
A∗A = R̃∗Q̃∗Q̃R̃ = R̃∗IR̃ = R̃∗R̃, so R∗R = R̃∗R̃ and consequently R̃−∗R∗ = R̃R−1. Thanks to thanks
to Lemma 7.2, we know that R̃−∗R∗ is lower triangular and that R̃R−1 is upper triangular. For a lower
triangular matrix to equal an upper triangular matrix, both must be diagonal: R̃R−1 = D is diagonal, and it
must have positive main diagonal entries because the main diagonal entries of both R̃ and R−1 are positive.
But D = D∗ = (R̃R−1)∗ = R−∗R̃∗ = (R̃−∗R∗)−1 = D−1, thus D2 = Im, hence D = Im. We then conclude
that R̃ = R and Q̃ = Q.

There exist several method to compute the QR decomposition we will present three of them below.

1.2 Gram-Schmidt Procedure
Given A = [a1 a2 . . . an], for all k ∈ [n], we want to estimate qk and the scalars r1,k, r2,k, . . . , rk,k satisfying:

ak =

k∑
i=1

qiri,k = q1r1,k + q2r2,k + . . .+ qkrk,k

They can be computed iteratively through the following steps:

• For k = 1, a1 = q1r11 thus set:

q1 ≡
a1
‖a1‖

and r11 ≡ ‖a1‖

• For k = 2, note that r12 = q∗1a2 and define:

y2 ≡ a2 − q1r12, q2 ≡
y2
‖y2‖

and r22 ≡ q∗2a2

...

• For kth step, identity ak = q1r1,k + . . .+ qk−1rk−1,k already imposes the choice ri,k ≡ q∗i ak, then set:

yk ≡ ak −
k−1∑
i=1

ri,kqi, qk ≡
yk
‖yk‖

and rk,k ≡ q∗kak
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1.3 Vectorized Gram-Schmidt Procedure
Let us note r1, . . . , rn, the columns of RT , one has:

R =

rT1
...
rTn

 and therefore: A =

n∑
i=1

qir
T
i .

Note that for all k ∈ N:

q∗k

(
A−

k−1∑
i=1

qir
T
i

)
=

n∑
i=k

q∗kqir
T
i = rTk .

We then follow the iterative computations:

• For k = 1:

q1 ≡
a1
‖a1‖

and rT1 ≡ q∗1A

...

• For kth step:

yk ≡

(
A−

k−1∑
i=1

qir
T
i

)
ek, qk ≡

yk
‖yk‖

and rTk ≡ q∗kA.

One can note with this iterative definition that of course:

QR =

n∑
i=1

qir
T
i =

n∑
i=1

qiq
∗
i A = A.

Moreover, given l ≤ k:

q∗l yk =

n∑
i=k

q∗l qir
T
i ek =

{
0 if l < k

rTk ek if l = k,

thus the family of n vectors q1 = y1

∥y1∥ , . . . , qn = yn

∥yn∥ is orthonormal by construction. Besides, for all k ∈ [n],
if we denote Ak =

∑n
i=k qir

T
i , we see that qk = Akek

∥Akek∥ and for all i ∈ [k − 1]:

rTk = q∗kA = q∗k(

n∑
i=1

qir
T
i ) = q∗k(

n∑
i=i

qir
T
i ) = q∗kAi,

Therefore for all i < k:

Rk,i = rTk ei = q∗kAiei = q∗kAiei = q∗kqi = 0,

Thus the matrix R is upper triangular as expected.

Remark 7.3. In practice, because of computation errors, at a step k, q1, . . . , qk re not ideally orthogonal,
to reduce the errors on the computation of rk, it is then better to choose:

rTk ≡ q∗k

(
A−

k−1∑
i=1

qir
T
i

)
.
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1.4 Householder Transformation
Definition 7.1. A projection matrix is a matrix P ∈ Mn(C) such that P 2 = P . A reflection matrix is a
matrix of the form H = In − 2P where P ∈Mn(C) is a projection.

Lemma 7.4. A reflection matrix is an involution (it is its own inverse). If the associated projection is
Hermitian then it is unitary.

Proof. Simply note that for any projection P :

(In − 2P )2 = In − 4P + 4P 2 = In.

Of course if P ∗ = P , then H∗ = In − 2P ∗ = H = H−1 and H is unitary.

Lemma 7.5. Given a vector x ∈ Cn, different from e1, let us introduce ϕ ∈ [0, 2π) such that x∗e1 = eiϕ|x∗e1|
and sets v ≡ x−‖x‖e−iϕe1. Denoting P ≡ 1

∥v∥2 vv
∗ and H = In− 2P , H is a reflexion and Hx = e−iϕ‖x‖e1

Proof. Note first that P is a projector (and consequently that H is a reflexion):

∀y ∈ Cn : P 2y =
1

‖v‖4
vv∗vv∗y =

1

‖v‖2
vv∗y = Py.

Besides, note that:

‖v‖2 = ‖x‖2 − ‖x‖eiϕe∗1x− ‖x‖e−iϕx∗e1 + ‖x‖2 = 2‖x‖2 − 2|x∗e1|‖x‖ = 2v∗x.

Thefore:

Hx = x− 2vv∗x

‖v‖2
= x− v = ‖x‖e−iϕe1.

The reflexion H is called a Householder transformation of x it is a hermitian reflexion (thus unitary see
Lemma 7.4) depicted on it is depicted on Figure 7.1 in the case where x∗e1 is real. We will then inroduce for
all such x ∈ Cn H(x) ≡ eiϕH, it is still a unitary matrix but not a reflexion nor a hermitian matrix anymore.

e1

e2

x

Hx = ‖x‖e1−‖x‖e1

P

P
⊥

Figure 7.1: reflection of a vector x on −‖x‖e1

To construct the QR decomposition of a given matrix A one can thus proceeds followingly:
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• For k = 1, with the notations of Example 7.5, let us introduce H1 ≡ H(x1) where x1 is the first column
of A. We know that H1x1 = ‖x1‖e1 and therefore:

H1A =


‖x1‖ ∗ · · · ∗
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗

 =

[
‖x1‖ ∗
0 A2

]
,

with A2 ∈Mn−1

• For k = 2, let us introduce

H2 =

[
1 0
0 H(x2)

]
,

where x2 ∈ Cn−1 is the first column of A2 ∈Mn−1. We have the identity:

H2H1A =

[
1 0
0 H(x2)

] [
‖x1‖ ∗
0 A2

]
=

‖x1‖ ∗ ∗
‖x2‖ ∗

(0) A3


...

Once we finished this iterative procedure, one just has to introduce the unitary matrix Q = Hm · · ·H2H1

that satisfies R ≡ QA is upper triangular, and therefore A = Q∗R is the QR decomposition of A as described
by Theorem 7.1.

2 Applications

2.1 Least square
Given A ∈Mn, y ∈ Cn, we want to find x ∈ Cn solution to

x = arg min
x∈Cn

‖Ax− y‖2 .

Let us assume that A admits the QR decomposition:

A = QR =
[
Q1 Q2

]
·
[
R1

0

]
= Q1R1

with R1 of full rank. One can then express:

‖Ax− y‖2 = ‖Q∗(Ax− y)‖2 = ‖Q∗(QRx− y)‖2 =

∥∥∥∥[Q∗
1

Q∗
2

]
(Q1R1x− y)

∥∥∥∥2
=

∥∥∥∥[R1x−Q∗
1y

−Q∗
2y

]∥∥∥∥2 = ‖R1x−Q∗
1y‖

2
+ ‖−Q∗

2y‖
2

The problem therefore boils down to minimizing ‖R1x−Q∗
1y‖

2. The optimal vector x ∈ Cn cancels the
gradient and therefore satisfies:

R∗
1(R1x−Q∗

1y) = 0 ⇐⇒ R1x = Q∗
1y

When R ∈ Mn is upper triangular and b ∈ Cn, the equation Rx = b solves easily thanks to successive
substitution (xn = bn

Rn,n
, xn−1 =

bn−1−Rn−1,n−1xn

Rn−1,n
...).
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2.2 Eigenvalue decomposition
The QR decomposition is widely used to compute eigenvalue decomposition of matrices. We provide below a
simple algorithm to get such a decomposition. The justifications of the success of such an algorithm are quite
elaborated, therefore we will not provide them in this lecture and simply mention that it rely on the same
mechanism that makes the power method converge to the eigenvector associated to the biggest eigenvalue
through successive iteration. Algorithm 2 will output a triangular matrix having the eigenvalues of A on the
diagonal and a unitary matrix V whose first column is the eigenvector associated to the biggest eigenvalue
of A. As such, this algorithm is a good alternative to the power method.

We provide below a lemma setting that the first output of the algorithm has the same eigenvalues as
the input (the convergence of the algorithm and the fact that this output is upper triangular is not justified
here).

Lemma 7.6. Given a full rank matrix A ∈ Mn(C), and a sequence of scalars (zk)k∈N ∈ CN, consider the
sequences of matrices (Ak)k∈N ∈Mn(C)N such that A0 = A and for all k ≥ 1:

Ak = Rk−1Qk−1 − zkIn,

where Qk, Rk are respectively the unitary and upper triangular matrix resulting from the QR decomposition
of Ak + zkIn. For all k ∈ N, A and Ak are unitary similar

Proof. This result is merely proven iteratively thanks to the identity:

Ak = Rk−1Qk−1 − zkIn = Q∗
k−1(Ak−1 + zk−1In)Qk−1 − zkIn = Q∗

k−1Ak−1Qk−1

= Q∗
k−1Q

∗
k−2Ak−2Qk−2Qk−1 = · · · = Q∗

k−1 · · ·Q∗
0AQ0 · · ·Qk−1,

and, of course, the matrix Q0 · · ·Qk−1 is unitary as a product of unitary matrices.

Algorithm 2 QR method.
Consider an initial guess x,
error = 1
Ak := A
V := In
while error > tol do

Aaux := Ak.
Draw ε ∼ N (0, 1) + iN (0, 1).
Qk, Rk := QR decomposition of Ak + εIn.
Ak := RkQk − εIn.
V = V Qk

error = ‖Sort(Diag(Ak))− Sort(Diag(Aaux))‖
Output Ak, V .

In the description of the algorithm the shift ε is introduced to speed up the computations. In particular,
when dealing with real matrices with complex eigenvalues, it is necessary to allow the convergence to a
triangular matrix with complex diagonal entries as expected.

2.3 Canonical correlation analysis (CCA).
As PCA, CCA is used for dimension reduction but it takes as input two matrices instead of one. The main
goal is generally to see how similar are two sets of data and provides some orthogonal projection on which
this similarity can be revealed. Considering two data matrices A ∈ Mm,n(C) and B ∈ Mm,e(C). We want
to find two low-rank approximations for A and B respectively that are close to each other.

We will see in next lecture a variational characterization of singular values (for non Hermitian matrices,
otherwise, one could use the Rayleigh-Ritz theorem):
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Given A ∈Mm,n(C) the singular value decomposition can be defined with the following iteration:

σ1(A) = max
x,y

|y∗Ax|
‖y‖‖x‖

≡ |u∗
1Av1|

‖u1‖‖v1‖
∀k ≥ 2 : σk(A) = max

x⊥u1,...,uk−1
y⊥v1,...,vk−1

|y∗Ax|
‖y‖‖x‖

≡ |u∗
kAvk|

‖uk‖‖vk‖
,

then A =
∑p

i=1 σk(A)ukv
∗
k and σ1(A) ≥ σ2(A) ≥ . . . ≥ σp(A) ≥ 0 with p ≡ Rk(A).

The CCA expresses in a similar way.

Definition 7.2 (Canonical correlation coefficient). Let A ∈ Mm,n(C), B ∈ Mm,r(C) and assume p =
rank(A) ≥ rank(B) = q. The canonical correlation coefficients, σ1(A,B), . . . , σq(A,B) of the pair (A,B) are
recursively defined as

σ1(A,B) = max
x,y

|y∗B∗Ax|
‖By‖‖Ax‖

≡ |y∗1B∗Ax1|
‖By1‖‖Ax1‖

∀k ∈ {2, . . . , q} : σk(A) = max
Ax⊥Ax1,...,Axk−1
By⊥By1,...,Byk−1

|y∗B∗Ax|
‖By‖‖Ax‖

≡ |y∗kB∗Axk|
‖Byk‖‖Axk‖

,

Then the normalized vectors Axk

∥Axk∥ ,
Byk

∥Byk∥ , for k = 1, . . . , q are called canonical vectors.

If p = q, then {Ax1, . . . , Axq} and {By1, . . . , Byq} are orthonormal basis for Im(A) and Im(B) respec-
tively. One also has the following bound on the canonical coefficients:

Lemma 7.7. The canonical correlation coefficients of a pair of two matrices are always lower than 1.

Proof. In the setting of Definition 7.2, one can bound thanks to Cauchy-Shwarz inequality:

σk(A) = max
Ax⊥Ax1,...,Axk−1
By⊥By1,...,Byk−1

|y∗B∗Ax|
‖By‖‖Ax‖

≤ 1.

Consider a QR decomposition of A and B:

A = QARA and B = QBRB ,

with QA ∈Mm,n, QB ∈Mm,r semi-unitary and RA ∈Mn, RB ∈Mr upper triangular invertible. Then:

σk(A,B) = max
Ax⊥Ax1,...,Axk−1
By⊥By1,...,Byk−1

|y∗B∗Ax|
‖By‖‖Ax‖

= max
QARAx⊥QARAx1,...,QARAxk−1
QBRBy⊥QBRBy1,...,QBRByk−1

|y∗R∗
BQ

∗
BQARAx|

‖QBRBy‖‖QARAx‖

= max
x⊥x1,...,xk−1
y⊥y1,...,yk−1

|y∗Q∗
BQAx|

‖y‖‖x‖
= σk(Q

∗
BQA),

the kth singular value of Q∗
BQA. Note that if QA = QB then Q∗

BQA = Im and all the canonical correlation
coefficients are equal to 1.

Noting that σk(A,B) = y∗kB
∗Axk with ‖Axk‖ = ‖Byk‖ = 1 setting X ≡ (x1, . . . , xk) and Y ≡

(y1, . . . , yk), one has the equivalent formulations of the canonical correlation problem:

1. Find X ∈Mn,q, Y ∈Mn,q that maximize Tr(Y ∗B∗AX), s.t. X∗A∗AX = Y ∗B∗BY = Iq

2. Find X ∈Mn,q, Y ∈Mn,q that minimize ‖BY −AX‖F , s.t. X∗A∗AX = Y ∗B∗BY = Iq.
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Lecture 8

Singular values decomposition and
applications

1 General results

Theorem 8.1 (Singular Value Decomposition). Let A ∈ Mn,m(C) with n ≥ m be given. Then there exist

unitary matrices V ∈ Mn(C) and W ∈ Mm(C) such that A = V ΣW ∗ with Σ =

[
Γ 0
0 0

]
∈ Mn,m(R),

Γ = Diag(σ1, . . . , σr), where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and r = Rk(A).

A decomposition of the form specified in Theorem 8.1 is called a singular value decomposition (SVD) of
the matrix A. The diagonal entries of the matrix Γ are called singular values and the columns of V and W
are called left and right singular vectors of A.

Proof. If A = 0, then we set V = In,Σ = 0 ∈Mn,m(C),Γ = [I],W = Im, and we are finished.
If A 6= 0 and r = Rk(A), since n ≥ m, we have 1 ≤ r ≤ m, and since A∗A ∈Mm(C) is Hermitian, there

exists a unitary matrix W = [w1, . . . , wm] ∈Mm(C) such that W ∗(A∗A)W = Diag(λ1, . . . , λm) ∈Mm(R).
Without loss of generality, we assume that λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. Given x ∈ Cn, one has the

implications Ax = 0 =⇒ A∗Ax = 0 and A∗Ax = 0 =⇒ ‖Ax‖ = x∗A∗Ax = 0 =⇒ Ax = 0,
thus Ker(A) = Ker(A∗A) and consequently Rk(A) = Rk(A∗A). Therefore, the matrix A∗A has exactly
r positive eigenvalues λ1, . . . , λr and m − r times the eigenvalue 0. Introducing the diagonal matrix Γ ≡
Diag(λ

1
2
1 , . . . , λ

1
2
r ) ∈Mr(R), let us further denote:

Λ ≡
[
Γ 0
0 Im−r

]
∈Mm(R) and X = (x1, . . . , xm) ≡ AWΛ−1 ∈Mn,m.

If one introduce the decomposition V ≡ (x1, . . . , xr) and Z ≡ (xr+1, . . . , xm) than one can express:[
V ∗V V ∗Z
Z∗V Z∗Z

]
=

[
V ∗

Z∗

] [
V Z

]
= XX∗ = Λ−1W ∗A∗AWΛ−1 =

[
Ir 0
0 0

]
,

which implies in particular that Z = 0 and V ∗V = Ir. Let us then complete (x1, . . . , xr) to create an
orthonormal basis of Cn: (x1, . . . , xr, x̃r+1, . . . , xn). Then the matrix U ≡ (V, Z̃) ∈ Mn(C) is unitary, with
Z̃ ≡ (x̃r+1, . . . , xn) ∈Mn,n−r. One can then conclude:

A =
[
V 0

] [Γ 0
0 Im−r

]
W ∗ =

[
V Z̃

] [Γ 0
0 0

]
W ∗ = UΣW ∗.

This lecture is a close copy of the book of Jörg Liesen and Volker Mehrmann: Linear Algebra
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Lemma 8.2. Suppose that the matrix A ∈ Mn,m(C) with rank(A) = r has an SVD as specified in The-
orem 8.1 with V = [v1, . . . , vn] and W = [w1, . . . , wm]. We then have Im(A) = Span{v1, . . . , vr} and
Ker(A) = Span{wr+1, . . . , wm}.

Proof. For j = 1, . . . , r, we have Awj = V ΣW ∗wj = V Σej = σjvj 6= 0, since σj 6= 0. Hence, these
r linearly independent vectors satisfy v1, . . . , vr ∈ Im(A). Now r = Rk(A) = dim(Im(A)) implies that
Im(A) = Span{v1, . . . , vr}.

For j = r + 1, . . . ,m, we have Awj = 0, and hence these m − r linearly independent vectors sat-
isfy wr+1, . . . , wm ∈ Ker(A). Then dim(Ker(A)) = m − dim(Im(A)) = m − r implies that Ker(A) =
Span{wr+1, . . . , wm}.

We end this presentation of the general results with an adaptation of Courant Fischer Theorem to singular
values. The following result is given without proof since one simply has to apply Courant Fischer theorem
to the matrix (A∗A)

1
2

Theorem 8.3 (Courant–Fischer for SVD). Let A ∈ Mn,m, q = min(n,m), we denote 0 ≤ σ1(A) ≤ · · · ≤
σq(A), the q singular values of A. For any k ∈ [q]:

σk(A) = min
dim S=k

max
x∈S∗

‖Ax‖
‖x‖

(8.1)

and
σk(A) = max

dim S=m−k+1
min
x∈S∗

‖Ax‖
‖x‖

. (8.2)

2 Applications
2.1 Low rank approximation
An SVD of the form A =

∑r
j=1 σjvjw

∗
j can be written as a sum of r matrices of the form σjvjw

∗
j , where

Rk(σjvjw
∗
j ) = 1. Let

Ak :=

k∑
j=1

σjvjw
∗
j for some k, 1 ≤ k ≤ r. (8.3)

Then Rk(Ak) = k and, using that the matrix spectral norm1 (or matrix 2-norm) ‖ · ‖ is unitarily invariant,
we get

‖A−Ak‖ = ‖V ∗(A−Ak)W‖ = ‖Diag(σk+1, . . . , σr)‖ = σk+1.

Hence A is approximated by the matrix Ak, where the rank of the approximating matrix and the approxi-
mation error in the spectral norm are explicitly known. The singular value decomposition furthermore yields
the best possible approximation of A by a matrix of rank k with respect to the spectral norm.

Theorem 8.4 (Optimal Approximation by SVD). With Ak as in (8.3), we have ‖A− Ak‖ ≤ ‖A− B‖ for
every matrix B inMn,m(C) with Rk(B) = k.

Proof. The assertion is clear for k = Rk(A), since then Ak = A and ‖A−Ak‖ = 0. Let k < Rk(A) ≤ m. Let
B ∈ Mn,m(C) with Rk(B) = k be given, then dim(Ker(B)) = m − k. If w1, . . . , wm are the right singular
vectors of A from the SVD, then U := Span{w1, . . . , wk+1} has dimension k + 1. Since Ker(B) and U are
subspaces of Cm with dim(Ker(B)) + dim(U) = m+ 1, we have Ker(B) ∩ U 6= {0}.

Let v ∈ Ker(B)∩U with ‖v‖ = 1 be given. Then there exist α1, . . . , αk+1 in C with v =
∑k+1

j=1 αjwj and∑k+1
j=1 |αj |2 = ‖v‖2 = 1. Hence

(A−B)v = Av −Bv =

k+1∑
j=1

αjσjvj ,

1∀A ∈ Mp,n, ‖A‖ = supx∈Cn\{0}
∥Ax∥
∥x∥
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and, therefore taking advantage of the fact that (v1, . . . , vk+1) is an orthonormal family:

‖A−B‖2 = max
∥y∥=1

‖(A−B)y‖2 ≥ ‖(A−B)v‖2 =

∥∥∥∥∥∥
k+1∑
j=1

αjσjvj

∥∥∥∥∥∥
2

=

k+1∑
j=1

|αjσj |2

≥ σ2
k+1

k+1∑
j=1

|αj |2 = σ2
k+1 = ‖A−Ak‖2,

which completes the proof.

2.2 Pseudo inverse
Another important application of the SVD arises in the solution of linear systems of equations. If A ∈
Mn,m(C) has an SVD of the form as given in Theorem 8.1, we define the matrix A† as follows:

A† := WΣ†V ∗ ∈Mm,n(C), where Σ† :=

[
Γ−1 0
0 0

]
∈ Rm,n.

One easily sees that A†A = W

[
Ir 0
0 0

]
W ∗ ∈Mm(R). If r = m = n, then A is invertible and the right-hand

side of the above equation is equal to the identity matrix In. In this case, we have A† = A−1. The matrix
A† can therefore be viewed as a generalized inverse, that in the case of an invertible matrix A is equal to the
inverse of A.
Definition 8.1. The matrix A† in is called Moore-Penrose inverse or pseudo-inverse of A.

Let A ∈ Mn,m(C) and b ∈ Cn be given. If the linear system of equations Ax = b has no solution, then
we can try to find an x̂ in Cm such that Ax̂ is “as close as possible” to b. Using the Moore-Penrose inverse
we obtain the best possible approximation with respect to the Euclidean norm.
Theorem 8.5. Let A be as given, with an SVD A = V ΣW ∗ as in Theorem 8.1 and A† the Moore-Penrose
pseudo inverse defined in Definition 8.1, then ‖b− AA†b‖ ≤ ‖b− Ay‖ for all y ∈ Cm, and the norm of A†b
is given by

‖A†b‖ =

 r∑
j=1

∣∣∣∣v∗j bσj

∣∣∣∣2
1/2

≤ ‖y‖

for all y in Cm with ‖b−AA†b‖ = ‖b−Ay‖.
Proof. Let y ∈ Cm be given and introduce the scalars ξ1, . . . , ξm ∈ C such that W ∗y = (ξ1, . . . , ξm). Then:

‖b−Ay‖2 = ‖V (V ∗b− Σz)‖2 = ‖V ∗b− Σz‖2 =

r∑
j=1

|v∗j b− σjξj |2 +
n∑

j=r+1

|v∗j b|2 (8.4)

Now, noting that b =
∑n

i=1(v
∗
i b)vi and AA†b = V ( Ir 0

0 0 )V
∗b =

∑r
i=1(v

∗
i b)vi, one can also bound:

‖b−AA†b‖2 =

∥∥∥∥∥
n∑

i=r+1

(v∗i b)vi

∥∥∥∥∥
2

=

n∑
i=r+1

|v∗i b|2 ≤ ‖b−Ay‖2,

for any y ∈ Cm.
One deduce from (8.4) that every vector y ∈ Cm that satisfies ‖b − Ay‖ = ‖b − AA†b‖ must have the

form y = W (
v∗
1b
σ1

, . . . ,
v∗
r b
σr

, yr+1, . . . , ym) for some yr+1, . . . , ym ∈ C. Recalling that A†b =
∑r

i=1
v∗
i b
σi

wi that
implies that:

‖y‖2 = ‖W ∗y‖2 =

r∑
i=1

|v∗i b|2

σ2
i

+

m∑
i=r+1

|yi|2 = ‖A†b‖2 +
m∑

i=r+1

|yi|2 ≥ ‖A†b‖2.
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Lecture 9

Triangular factorizations and
canonical forms

If a linear system Ax = b has a nonsingular triangular coefficient matrix A ∈ Mn, computation of the
unique solution x is remarkably easy. If, for example, A = (Aij)i, j ∈ [n] is upper triangular and nonsingular,
then all Aii 6= 0 and one can employ back substitution: Annxn = bn determines xn; An−1,n−1xn−1 +
An−1,nxn = bn−1 then determines xn−1 since xn is known and An−1,n−1 6= 0; proceeding in the same fashion
upward through successive rows of A, one determines xn−2, xn−3, . . . , x2, x1.

If A ∈Mn is not triangular, one can still use forward and back substitution to solve Ax = b provided that
A is nonsingular and can be factored as A = LU , in which L is lower triangular and U is upper triangular:
(i) use forward substitution to solve Ly = b, and (ii) use back substitution to solve Ux = y.

Given A ∈ Mn, an “LU factorization of A” is any decomposition A = LU , in which L ∈ Mn is lower
triangular and U ∈Mn is upper triangular.

Remark 9.1. Let A ∈Mn and suppose that A = LU is an LU factorization. For any block 2× 2 partition

A =

[
A11 A12

A21 A22

]
, L =

[
L11 0
L21 L22

]
and U =

[
U11 U12

0 U22

]
,

with A11, L11, U11 ∈Mk and k < n, we have:
A11 = L11U11

A12 = L11U12

A21 = L21U11

A11 = L21U12 + L22U22.

(9.1)

In particular, note that each leading principal submatrix of A (A11 in this example) has an LU factorization
in which the factors are the corresponding leading submatrices of L and U .

Given A ∈Mn and i ∈ [n], recall the notation A[i] ≡ (Ak,l)k,l∈[i] ∈Mi, the ith principal submatrix of A.
With these notations note that the matrices A11, L11 and U11 can respectively be noted A[k], L[k] and U[k]

Theorem 9.2. Let A ∈Mn be given. Then

1. A has an LU factorization in which L is nonsingular if and only if A has the row inclusion property:
For each i = 1, . . . , n− 1, (Ai+1,j)j∈[i] is a linear combination of the rows of A[i]

2. A has an LU factorization in which U is nonsingular if and only if A has the column inclusion property:
For each j = 1, . . . , n− 1, (Ai,j+1)i∈[j] is a linear combination of the columns of A[j]

This lecture is a close copy of the book of Roger A. Horn and Charles R. Johnson : Matrix Analysis
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Proof. If A = LU , then as explained in Remark 9.1, A[i+1] also admits a LU factorization, more precisely
A[i+1] = L[i+1]U[i+1]. Thus, to verify the necessity of the row inclusion property, it suffices to take i = k =
n− 1 in the partitioned presentation given in Remark 9.1. Since L is nonsingular and triangular, L11 is also
nonsingular, and we have A21 = L21U11 = L21L

−1
11 L11U11 = (L21L

−1
11 )A11, which verifies the row inclusion

property.
Conversely, if A has the row inclusion property, we may construct inductively an LU factorization with

nonsingular L as follows. The cases n = 1, 2 are easily verified. Given k in[n], we then introduce the block
decomposition A[k] = (A11 A12

A21 A22
) with A11 = A[k−1] ∈ Mk−1, AT

21, A12 ∈ Mk−1,1 and A22 ∈ M1. We further
assume that A11 = L11U11 with L11 nonsingular, and that the row vector A21 is a linear combination of the
rows of A11. Then there is a vector y such that A21 = yTA11 = yTL11U11. Inspiring from the expressions
provided in (9.1), note that choosing L21 = yTL11 ensures A21 = yTL11U11 = L21U11, we beside may take
U12 = L−1

11 A12, L22 = 1, and U22 = A22 − L21U12 to obtain an LU factorization:

A[k] =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

]
·
[
U11 U12

0 U22

]
,

in which L ≡ ( L11 0
L21 L22

) is non singular (since L11 is non singular and L22 6= 0. One can then follow this
procedure until k = n.

Corollary 9.3. (LDU factorization). Let A = [aij ] ∈Mn be an invertible matrix. The matrix A has an LU
factorization A = LU if and only if A[i] is nonsingular for all i = 1, . . . , n.

Proof. 1. One may simply note that if all the principal submatrices are invertible then their columns or
rows span the entire space. More precisely, given k ∈ [n], any column of (Ai,j)i∈[k],j∈[n] (resp. any
row of (Ai,j)i∈[n],j∈[k]) is a linear combination of the columns (resp. of the row) of A[k]. Conversely,
since A is non singular, A = LU implies that L and U are non singular. Since U and L are triangular,
that implies in particular that L[k] and U[k] are non singular for all k ∈ [n] and consequently that
A[k] = L[k]U[k] is non singular.

2. skipped.

Example 9.4. Not every matrix has an LU factorization. If

A =

[
0 1
1 0

]

could be written as A = LU =

[
l11 0
l21 l22

] [
u11 u12

0 u22

]
, then l11u11 = 0 implies that either l11 = 0 or l11 = 0.

In the former case, that would imply that 1 = l11u12 = 0 and the latter case would imply that 1 = l21u11 = 0
which is also absurd.

Lemma 9.5. Let A ∈Mn be nonsingular. Then there is a permutation matrix P such that A can be factored
as A = PLU with L and U being lower and upper triangular matrices, respectively.

Proof. The proof is by induction on n. If n = 1 or 2, the result is clear by inspection. Assume the result
holds for n− 1. Consider a nonsingular matrix A ∈Mn. We know that the (n− 1) first columns are linearly
independent, therefore there exist n − 1 linearly independent rows of (Ai,j)i∈[n],j∈[n−1] that can be put in
first position through a permutation R. Then noting B = RA, we know that B[n−1] is non singular and
the induction hypothesis allows us to introduce a permutation matrix Q ∈Mn−1 such that B[n−1] = QL′U ′

with L′ lower triangular and U ′ upper triangular. We know from Theorem 9.2 that Q−1Bn−1 satisfies the
inclusion row property. Then by construction, setting, Q̃ ≡ (Q

−1 0
0 1

), we deduce that Q̃B also satisfies the
inclusion row property and that there exists L lower triangular and U upper triangular such that Q̃B = LU ,
setting P ≡ R−1Q̃−1 allows to conclude the proof.

In the case where the initial matrix is Hermitian positive semidefinite, then the LU decomposition can
be improved to a so-called “Cholesky decomposition” where U = L∗, the existence and uniqueness of L are
simply deduced from the existence and uniqueness of a square root of A.
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Is A square?

Use QR solver Is A triangular?

Use triangular
solver

Is Size(A) ≤ 16× 16? (real)
or 8× 8(complex)

Is A upper
Hessenberg?

Is A Tridiagonal

Use Hessenberg
solver

Use Tridiagonal
solver

Is A permuted
triangular

Use permuted
solver

Is A Hermitian

Use LU solver Does Cholesky
succeeds?

Use Cholesky solver Use LU solver

Use LU solver

No Yes

Yes No

No

Yes

No Yes

No

Yes No

No Yes

Yes No

Yes

Figure 9.1: Chart taken from https://www.mathworks.com//help//matlab/ref/mldivide.html present-
ing the decision tree of the algorithm chosen to solve the system Ax = B when A and B are full (i.e. not
sparse).

Proposition 9.6 (Cholesky factorization). Let A ∈ Mn be Hermitian. Then A is positive semidefinite
(respectively, positive definite) if and only if there is a lower triangular matrix L ∈ Mn with nonnegative
(respectively, positive) diagonal entries such that A = LL∗. If A is positive definite, L is unique. If A is
real, L may be taken to be real.

Proof. Let A1/2 = QR be a QR factorization and let L = R∗. Then A = A1/2A1/2 = R∗Q∗QR = R∗R =
LL∗.

In the case where A is PD, if there exists M lower triangular such that A = MM∗ then M−1L = M−∗L−∗.
Being both upper and lower triangular, M−1L and M−∗L−∗ are both equal to a diagonal matrix D. Knowing
that all the term on the diagonal are positive real number, the identity writes more simply D = M−1L =
ML−1 which implies L = MD = DLD, which can only be possible if D = In since the diagonal terms of L
are strictly positive. Finally, one has the identity M = L which proves the uniqueness

The LU decomposition, together with the QR decomposition can be more or less interesting depending
on the matrix considered. We display on Figure 9.1 the choices made by Matlab to find the solution x to the
equation Ax = B. Similar chart exists to compute the eigen values of a matrix (as for the QR method and
in a similar way, the LU decomposition can be used to compute the eigenvalue decomposition of a matrix).
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Lecture 10

Kronecker product and Tensors

1 General results on Kronecker product

To give some motivation for the introduction of the Kronecker product, let us give us as objective to
solve the matrix equation:

A1XB1 +A2XB2 = C

where the matrices A1�A2, B1, B2, C are given and X is unknown. In the description of the solutions of
such equations, the Kronecker product, another product of matrices, is useful. In this chapter we develop
the most important properties of this product and we study its application in the context of linear matrix
equations. Note that the Kronecker product could be seen as a tensor product represented in a particular
basis.

Definition 10.1 (Kronecker Product). Given A = [Aij ] ∈ Mm and B ∈ Mn, the Kronecker product of A
and B is defined as:

A⊗B := [AijB] =

A11B · · · A1mB
... . . . ...

Am1B · · · AmmB

 ,

and is called the Kronecker product of A and B.

Note that this product is non commutative.

Lemma 10.1. Given A ∈Mn, B ∈Mm, C ∈Mp, and µ ∈ C the following computational rules hold:

1. A⊗ (B ⊗ C) = (A⊗B)⊗ C.

2. (µA)⊗B = A⊗ (µB).

3. (A+B)⊗ C = (A⊗ C) + (B ⊗ C), whenever A+B is defined.

4. A⊗ (B + C) = (A⊗B) + (A⊗ C), whenever B + C is defined.

5. (A⊗B)T = AT ⊗BT , and therefore the Kronecker product of two symmetric matrices is symmetric.

Note in particular that unike classical product the order of the matrices in the Kronecker product is not
inverted through transposition.

Lemma 10.2 (Multiplication of Kronecker Products). For A,C ∈Mm and B,D ∈Mn we have

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Hence, in particular:
The two first sections of this lecture is a close copy of the book of Jörg Liesen and Volker Mehrmann: Linear Algebra
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1. A⊗B = (A⊗ In)(Im ⊗B) = (Im ⊗B)(A⊗ In),

2. (A⊗B)−1 = A−1 ⊗B−1, if A and B are invertible.

Proof. Since A⊗B = [AijB] and C ⊗D = [CijD], the block matrix [Fij ] = (A⊗B)(C ⊗D) is given by

Fij =

m∑
k=1

(AikB)(CkjD) =

m∑
k=1

AikCkjBD =

(
m∑

k=1

AikCkj

)
BD.

For the block matrix [Gij ] = (AC)⊗ (BD) with Gij ∈Mn, we obtain

Gij = HijBD, where Hij =

m∑
k=1

AikCkj ,

which shows (A⊗B)(C ⊗D) = (AC)⊗ (BD).
Items 1. and 2. easily follow from this equation.

Corollary 10.3. Given A,P ∈Mm and B,Q ∈Mn where P and Q are invertible:

(P ⊗Q)−1(A⊗B)(P ⊗Q) = (P−1AP )⊗ (Q−1BQ)

Lemma 10.4 (Non-Commutativity). In general, the Kronecker product is non-commutative, but for A ∈Mm

and B ∈Mn there exists a permutation matrix P ∈Mmn,mn such that

A⊗B = PT (B ⊗A)P.

Proof. Given an integer p ∈ N, we note p
(n)
r the rest in the euclidean division of p with n and p

(n)
q the

quotient (p = np
(n)
q + p

(n)
r ). To simplify the proof, we will now start the indexing of columns and rows of

matrices from 0 (A = (Ai,j)i,j∈{0,...,m−1} and B = (Bi,j)i,j∈{0,...,n−1}). Given i, j ∈ {0, . . . , nm}:

[A⊗B]i,j = A
i
(n)
q ,j

(n)
q

B
i
(n)
r ,j

(n)
r

and [B ⊗A]i,j = A
i
(m)
r ,j

(m)
r

B
i
(m)
q ,j

(m)
q

, (10.1)

Naturally, we introduce the permutation π ∈ Snm such that ∀p ∈ [nm]

π(p) = np(m)
r + p(m)

q .

The inequality p ≤ nm implies p
(m)
q ≤ n, the uniqueness of the euclidean division rest and quotient then

allows us to deduce that:

p(m)
r = π(p)(n)q and p(m)

q = π(p)(n)r .

Therefore, (10.1) allows us to set that:

[A⊗B]i,j = [B ⊗A]π(i),π(j) =
[
PT (B ⊗A)P

]
i,j

where P ∈Mnm is the permutation matrix1 defined as P = (δi,π(j))i,j∈[nm].

Theorem 10.5 (Properties of the Kronecker Product). For A ∈Mm and B ∈Mn the following rules hold:

1. det(A⊗B) = (detA)n(detB)m = det(B ⊗A).

2. Tr(A⊗B) = Tr(A)Tr(B) = Tr(B ⊗A).

3. Rk(A⊗B) = Rk(A)Rk(B) = Rk(B ⊗A).
1Classically, δi,j = 1 if i = j and δi,j = 0 if i 6= j

67



Matrix analysis - CSC6119

Proof. 1. From 1. in Lemma 10.2 and the multiplication theorem for determinants we get

det(A⊗B) = det((A⊗ In)(Im ⊗B)) = det(A⊗ In) det(Im ⊗B).

It is straight forward ot see from the block diagonal matrix determinant formula that det(Im ⊗ B) =
det(B)m. By Lemma 10.4, there exists a permutation matrix P with A ⊗ In = P (In ⊗ A)PT . This
implies that

det(A⊗ In) = det(P (In ⊗A)PT ) = det(In ⊗A) = (detA)n.

It then follows that det(A⊗B) = (detA)n(detB)m, and therefore also det(A⊗B) = det(B ⊗A).

2. From A⊗B = [AijB] we obtain

Tr(A⊗B) =

m∑
i=1

n∑
j=1

AiiBjj =

(
m∑
i=1

Aii

) n∑
j=1

Bjj

 = Tr(A)Tr(B)

= Tr(B)Tr(A) = Tr(B ⊗A).

3. We know from Schur Theorem that there exists some matrices P, T ∈ Mm and Q,U ∈ Mn such that
P,Q are both invertible, T,U both upper triangular and:

A = P−1TP and B = Q−1UQ.

The rank of A and B are respectively the number of zeros on the diagonal of T and U . Corollary 10.3
allows us to express:

Rk(A⊗B) = Rk
(
(P ⊗Q)−1(A⊗B)(P ⊗Q)

)
= Rk(T ⊗ U) = Rk(A)Rk(B),

thanks to a simple account of the number of zeros on the diagonal.

2 Resolution of linear matrix equations
For a matrix A = [a1, . . . , an] ∈Mm,n with columns aj ∈ Cm, j = 1, . . . , n, we define

Vec(A) :=


a1
a2
...
an

 ∈ Cmn.

The application of “vec” turns the matrix A into a “column vector” and thus “vectorizes” A.

Theorem 10.6 (Vectorization and Kronecker Product). For A ∈Mm, B ∈Mn, and C ∈Mm,n we have

Vec(ACB) = (BT ⊗A)Vec(C).

Hence, in particular,

1. Vec(AC) = (In ⊗A)Vec(C) and Vec(CB) = (BT ⊗ Im)Vec(C),

2. Vec(AC + CB) = ((In ⊗A) + (BT ⊗ Im))Vec(C).

Proof. For j = 1, . . . , n, the jth column of ACB is given by

(ACB)ej = (AC)(Bej) =

n∑
k=1

Bkj(AC)ek =

n∑
k=1

(BkjA)(Cek)

=
[
B1jA,B2jA, . . . , BnjA

]
Vec(C),

which implies that Vec(ACB) = (BT ⊗A)Vec(C). With B = In respectively A = Im we obtain 1., while 1.
and the linearity of vec yield 2..
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In order to study the relationship between the eigenvalues of the matrices A,B and those of the Kronecker
product A⊗B, we use bivariate polynomials, i.e., polynomials in two variables. If

p(t1, t2) =

l∑
i,j=0

αijt
i
1t

j
2 ∈ C[t1, t2]

is such a polynomial, then for A ∈Mm and B ∈Mn we define the matrix

p(A,B) :=

l∑
i,j=0

αijA
i ⊗Bj .

Here we have to be careful with the order of the factors, since in general Ai ⊗Bj 6= Bj ⊗Ai.

Theorem 10.7 (Stephanos). Let A ∈Mm and B ∈Mn be two matrices that have Jordan canonical forms
and the eigenvalues λ1, . . . , λm ∈ C and µ1, . . . , µn ∈ C, respectively. The following assertions hold:

1. The eigenvalues of p(A,B) are p(λk, µℓ) for k = 1, . . . ,m and ℓ = 1, . . . , n.

2. The eigenvalues of A⊗B are λk · µℓ for k = 1, . . . ,m and ℓ = 1, . . . , n.

3. The eigenvalues of A⊗ In + Im ⊗B are λk + µℓ for k = 1, . . . ,m and ℓ = 1, . . . , n.

Proof. Let S ∈ Mm(C) and T ∈ Mn(C) be invertible such that S−1AS = JA and T−1BT = JB are in
Jordan canonical form. The matrices JA and JB are upper triangular. Thus, for all i, j the matrices J i

A⊗Jj
B

and J i
A⊗Jj

B are upper triangular. The eigenvalues of JA and JB are λ1, . . . , λm and µ1, . . . , µn, respectively.
Thus, p(λk, µℓ)k∈[m],ℓ∈[n], are the diagonal entries of the matrix p(JA, JB). Using Corollary 10.3 we obtain

p(A,B) =

l∑
i,j=0

αij(SJAS
−1)i ⊗ (TJBT

−1)j =

l∑
i,j=0

αij(SJ
i
AS

−1)⊗ (TJj
BT

−1)

=

l∑
i,j=0

αij(S ⊗ T )(J i
A ⊗ Jj

B)(S ⊗ T )−1 = (S ⊗ T )p(JA, JB)(S ⊗ T )−1

which implies 1. The assertions 2. and 3. follow from 1. with p(t1, t2) = t1t2 and p(t1, t2) = t1 + t2,
respectively.

Lemma 10.8 (Matrix Exponential of a Kronecker Product). For A ∈Mm, B ∈Mn, and C := (A⊗ In) +
(Im ⊗B) we have

exp(C) = exp(A)⊗ exp(B).

Proof. From Lemma 10.2, Item 1., we know that the matrices A⊗ In and Im ⊗B commute. With classical
operation on exponentials:

exp(C) = exp(A⊗ In + Im ⊗B)

= exp(A⊗ In) exp(Im ⊗B)

=

 ∞∑
j=0

1

j!
(A⊗ In)

j

( ∞∑
i=0

1

i!
(Im ⊗B)i

)

=

∞∑
j=0

∞∑
i=0

1

j!i!
(A⊗ In)

j(Im ⊗B)i

=

∞∑
j=0

∞∑
i=0

1

j!i!
(Aj ⊗Bi)

= exp(A)⊗ exp(B),

where we have used the properties of the matrix exponential series.
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The following result on the matrix exponential function of a Kronecker product is helpful in applications
that involve systems of linear differential equations. For given matrices Aj ∈ Mm, Bj ∈ Mn, j = 1, . . . , q,
and C ∈Mm,n an equation of the form

A1XB1 +A2XB2 + . . .+AqXBq = C (10.2)

is called a linear matrix equation for the unknown matrix X ∈Mm,n.

Theorem 10.9. A matrix X̂ ∈Mm,n solves (10.2) if and only if Vec(X̂) ∈Mmn,1 solves the linear system
of equations

GVec(X̂) = Vec(C), where G :=

q∑
j=1

BT
j ⊗Aj .

Proof. Simple application of Theorem 10.6.

We now consider two special cases of (10.2).

Theorem 10.10 (Sylvester Equation). For A ∈Mm, B ∈Mn, and C ∈Mm,n, the Sylvester equation

AX +XB = C

has a unique solution if and only if A and −B have no common eigenvalue.

Proof. Analogous to the representation in Theorem 10.9, we can write the Sylvester equation as

(In ⊗A+BT ⊗ Im)Vec(X) = Vec(C),

then Theorem 10.7 allows us to set that the set of eigenvalues of In ⊗ A + BT ⊗ Im is exactly {λ + µ, λ ∈
Sp(A), µ ∈ Sp(B)} which does not contains 0 if and only if A and −B do not have common eigenvalue.

Corollary 10.11. For A,C ∈Mn the Lyapunov equation

AX +XA∗ = C

has a unique solution X̂ ∈ Cn,n if the eigenvalues of A have negative real parts. If, furthermore, C is
Hermitian, then also X̂ is Hermitian.

Proof. Since by assumption A and −A∗ have no common eigenvalues, the unique solvability follows from
Theorem 10.10. Note besides that if C is Hermitian, then:

AX̂∗ + X̂∗A∗ = C∗ = C,

in other words, X̂∗ is also solution, which implies, by uniqueness of the solution that X̂∗ = X̂ (X̂ is
Hermitian).

Equations provided in Theorem 10.10 and Corollary 10.11 are quite important in the field of control
theory (that deals with the control of dynamical systems in engineered processes and machines), therefore
some powerful method are required to compute the solution. A standard solution is to employ the Bartels–
Stewart algorithm that relies on the triangulation provided by the Schur decomposition. We simply describe
below the procedure to compute solution to:

AX +XA∗ = C.

Following the result of Theorem 10.10, we assume A and −A∗ do not have common eigenvalues so that the
equation admits a unique solution.

1. Compute the Schur decomposition R = U∗AU where the matrix R is upper triangular and U is
Hermitian.
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2. Set F = UTCV , one then has to solve the simplified system RY + Y R∗ = F

3. Consider the block decomposition F = ( F11 F12

F21 F22
), Y = ( Y11 Y12

Y21 Y22
), R = (R11 R12

0 R22
), where F22, Y22, R22 ∈ C

(then F11, Y11, R11 ∈Mn−1), one then has to solve the system of equations:

F11 = R11Y11 + Y11R
∗
11 +R12Y21 + Y12R

∗
12

F12 = R11Y12 +R12Y22 + Y12R
∗
22

F21 = R22Y21 + Y21R
∗
11 + Y22R

∗
12

F22 = R22Y22 + Y22R
∗
22.

4. The last equation imposes Y22 = F22

R22+R∗
22

(R22 + R∗
22 6= 0 since R22 is an eigenvalue of A that should

therefore satisfy −R∗
22 6= R22), then Y21 and Y12 are solved with the equations:

Y21(R22In−1 −R∗
11) = F21 − Y22R

∗
12 and (R11 +R∗

22In−1)Y12 = F12 − Y22R21,

which is easy to solve by iterative substitution since R11+R∗
22In−1 is triangular. Note that R22In−1+

R∗
11 is invertible because by hypothesis on A, R22 is not an eigenvalue of −A∗, thus of R∗

11.

5. Employ the previous procedure (starting with a decomposition in n − 1, 1 block matrices) to the
equation R11Y11 + Y11R

∗
11 = F11 −R12Y21 − Y12R

∗
12 and proceed until one gets a block decomposition

1, 1.

3 Tensors
Tensor is a multi-way array. An N -way tensor T ∈ CI1×I2×···×IN can express:

T = (Ti1,i2,...,iN )i1∈[I1],...,iN∈[IN ].

(in particular matrices are 2-way tensors). We will focus on 3-way tensor.

Definition 10.2. (Outer product) Given a ∈ CI and b ∈ CJ , we denote a • b = abT . Given a supplementary
c ∈ CK :

a • b • c = (aibjck)i∈I,j∈J,k∈K .

One of the big issues in tensor theory is to represent a tensor X as a following sum:

X =

R∑
r=1

(ar • br • cr), (10.3)

where R ∈ N. There exist multiple definitions of the rank, we provide below the most common one that
relies on the above decomposition.

Definition 10.3 (Tensor rank). Given a tensor T ∈ CI1×I2×···×IN , the minimal integer R ∈ N such that
there exists RN vectors:

a
(1)
1 , . . . , a

(1)
R ∈ CI1 , a

(2)
1 , . . . , a

(2)
R ∈ CI2 , . . . , a

(N)
1 , . . . , a

(N)
R ∈ CIN ,

such that T =
∑R

r=1 a
(1)
r • · · · • a(N)

r .

Then we say that T is a sum of R tensor of rank 1.

Proof of the existence and uniqueness of the rank. Given i1 ∈ [I1], . . . , iN ∈ [IN ], let us introduce the tensor:

Ei1,...,iN ≡ eI1i1 • · · · • e
IN
iN
∈ CI1×···×IN ,
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where for all ℓ ∈ [N ], eIℓiℓ is the iℓ vector of the canonical basis of CIℓ . Note that Ei1,...,iN is full of zeros
with just an entry equal to one at the index (i1, . . . , iN ). The tensors (Ei1,...,iN )i1∈[I1],...,iN∈[IN ] form a basis
of CI1×···×IN and for any T ∈ CI1×···×IN , we have:

T =
∑

i1∈[I1],...,iN∈[IN ]

Ti1,...,iNEi1,...,iN =
∑

i1∈[I1],...,iN∈[IN ]

Ti1,...,iN eI1i1 • · · · • e
IN
iN

,

which implies that the rank is well defined as the minimum of a non empty set bounded below by 0. Note
in passing that we have just shown that the rank of a tensor of CI1×···×IN is always lower that I1 · · · IN .

Decomposition (10.3) can be schematically represented this way:

= + + + · · ·+
a1

b1

c1

a2

b2

a3

b3

ar

br

I

c2 c3 cr

J
H

This decomposition is not unique and it is also known as “tensor rank decomposition”, “Canonical Polyadic
decomposition” (CPD) or “Parallel factor analysis”

The tensor decomposition problem formulates:

Minimize:
∥∥∥∥∥X −

R∑
r=1

ar • br • cr

∥∥∥∥∥
2

F

, (10.4)

where [a1, a2, . . . , aR] ∈ CI×R, [b1, b2, . . . , bR] ∈ CJ×R, [c1, c2, . . . , cR] ∈∈ CK×R.
This problem can be rewritten with so-called “slabs” which can be defined through 3 directions (for

tensors of degree 3) and are simply obtained by fixing one index of a given axis. We depict below the slabs
of all directions:

i

j
k

X

X
(3)
k

X
(2)
j

X
(1)
i

Horizontal slabs
Lateral Slabs Frontal slabs

given a decomposition X =
∑R

r=1(ar • br • cr), note that:

X
(1)
i =

R∑
r=1

air(br • cr) =
R∑

r=1

airbrc
T
r X

(2)
j =

R∑
r=1

bjrarc
T
r X

(3)
k =

R∑
r=1

ckrarb
T
r .

The problem can then rewrite:

Minimize:
I∑

i=1

∥∥∥∥∥X (1)
i −

R∑
r=1

Ar,ibrc
T
r

∥∥∥∥∥
2

F

,

where we employed the notation A = (a1, . . . , aR) = (Ai,r)i∈[I],r∈[R].
Note with a vectorization that given i ∈ [I]:

Vec(X(1)
i ) =

R∑
r=1

airVec(brcTr ) = (Vec(b1cT1 ), . . . ,Vec(bRcTR))︸ ︷︷ ︸
=(C⊙B)∈RJK×R

ai,1
...

ai,R

 = (C �B)ãi,
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where the notation “C � B” designates the Khatri-Rao product product. Note that for any vector a ∈ RI

and b ∈ RJ , Vec(abT ) = b⊗ a so the Khatri-Rao product of two matrices A ∈ RI×R and B ∈ RJ×R can also
be expressed followingly:

A�B = (a1 ⊗ b1, . . . , aR ⊗ bR).

Note also that ãi is actually the ith column of AT . Thus, if one introduces the matrix:

X (1) ≡
(

Vec(X(1)
1 ), . . . ,Vec(X(1)

I )
)
,

one has the identity:

X (1) = (C �B)AT

The same way, with similar notations, one can show that:

X (2) = (C �A)BT and X (3) = (B �A)CT .

The problem (10.4), is then generally solved by the so-called “Alternating Least Squares (ALS) Algo-
rithm”. The idea is to fix all factor matrices except for one in order to optimize for the non-fixed matrix with
a classical least square algorithm and then repeat this step for every matrix repeatedly until some stopping
criterion is satisfied. More precisely, for 3-way tensor case one needs to follow the following steps repeatedly
until convergence:

A← arg minA‖X (1) − (C �B)AT ‖
B ← arg minB‖X (2) − (C �A)BT ‖
C ← arg minC‖X (3) − (B �A)CT ‖
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