
Matrix analysis - CSC6119 - CIE6002

Homework 4: MUSIC algorithm

General instructions

• You must submit your results and solutions in a single PDF file. We recommend using LaTeX with a
basic template, which you can reuse for each homework assignment.

• This assignment is due on 07/03/2024, by 11:59 PM. Submissions will not be accepted after this
deadline.

• If you have any questions, you can contact TA ZhangWenrang via email at 223040237@link.cuhk.edu.cn,
or during office hours on Wednesday from 14:00 to 15:00 in room ZX, 4F-72.

Problem 1 (50%)

Let A,B ∈ Mn. We want to prove:

A is unitarily similar1 to B ⇐⇒ ∃S ∈ Mn, invertible, such that A = SBS−1 and A∗ = SB∗S−1. (∗)

1. Given a matrix M ∈ Mn, non singular, show that there exist unique matrices P,Q ∈ Mn positive
semidefinite and U ∈ Mn unitary such that M = PU = UQ. Show in passing that P is a polynomial in
MM∗ and Q is a polynomial in M∗M . (Hint: recall from the proof of the theorem on the existence and

uniqueness of roots of Hermitian matrices that given any H positive definite, H
1
2 is a polynomial of H).

Correction: Considering the singular decomposition of M , we know that there exist unitary matrices
V ∈ Mn and W ∈ Mn, and a positive definite diagonal matrix Σ ∈ Mn, such that M = V ΣW ∗. Note
then that M = (V ΣV ∗)(VW ∗) = PU , in which P = V ΣV ∗ is positive semidefinite and U = VW ∗ is
unitary. Since P 2 = V ΣΣV ∗ = V ΣΣTV ∗ = (V ΣW ∗)(WΣTV ∗) = MM∗, P is uniquely determined
as the positive semidefinite square root of MM∗. As a consequence, U = P−1M is also uniquely
determined. One deduce the same way that M = UQ with Q ≡ WΣW ∗ that satisfies Q2 = M∗M , the
uniqueness is then deduced similarly. As square root of, respectively, MM∗ and M∗M , P and Q are
polynomials of, respectively, MM∗ and M∗M .

2. Show the implication “ =⇒ ” in (∗) Correction: If one assumes that A is unitarily similar to B,
that means that there exists a unitary matrix U ∈ Mn such that A = U∗BU , then one also has
A∗ = U∗B∗U , denoting S ≡ U∗, one retrieve the right-hand side of (∗).

3. Assuming from now on the right assertion in (∗), show that A(SS∗) = (SS∗)A. Correction: Simply
note that ASS∗ = SBS∗ = (SB∗S∗)∗ = (SB∗S−1SS∗)∗ = (A∗SS∗)∗ = SS∗A.

4. Let S = PU be the decomposition introduced in Item 1, explain why AP = PA. Correction: Recall
from Item 1 that P is a polynomial of SS∗ and from Item 3 that SS∗ commutes with A, therefore P
commutes with A.

5. Conclude on the validity of the converse implication “⇐=”. Correction: Injecting S = PU in the
identity A = SBS−1, one obtains A = PUBU∗P−1 which implies UBU∗ = P−1AP = A thanks to
Item 4.

1It means that there exists a unitary matrix U ∈ Mn such that U∗AU = B
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Problem 2 (50%) (Direction of Arrival (DoA) estimation problem
by MUSIC)

Consider a wireless scenario where a multiple-antenna receiver receives signals from K sources with different
directions of arrivals. One incident signal coming from an angle θ can be represented followingly:

We want to retrieve the angles of the different signals. Let M be the number of antennas (it will replace
here the time window “d” that we introduced in the course), (sk[n])n∈[N ] ∈ CN denote the kth source signal
sequence, k = 1, . . . ,K, which are assumed to be independent from one another. The received signal vector
can be expressed as

∀n ∈ [N ] : y[n] =

K∑
k=1

a(θk)sk[n] + w[n] ∈ CM

where w[n] ∼ N (0, σwIM ) is a noise vector a(θk) is the steering vector of source k with θi ∈ [−π/2, π/2]
(rad) and

a(θk) =


1

eiπδ sin(θk)

...
ei(M−1)πδ sin(θk)

 ∈ CM .

1. Show that the correlation matrix Ry[n] = E[y[n]y[n]∗] can be expressed as

Ry[n] = AE[S[n]]S[n]∗]A∗ + σ2
wIM ,

where A = [a(θ1), a(θ2), . . . , a(θK)] ∈ MM,K and S[n] = [s1[n], . . . , sK [n]] ∈ CK .

We will now assume that

E[S[1]S[1]∗] ≈ · · · ≈ E[S[N ]S[N ]∗] ≈ 1

N
SS∗

where S = [S[1], . . . , S[N ]] ∈ MK,N and that 1
N SS∗ is of rank K ≤ N,M . Following the idea of

MUSIC presented in the lecture and noting that:

Ry[1] ≈ · · · ≈ Ry[N ] ≈ R̂y =
1

N

N∑
n=1

y[n]y[n]∗,

illustrate how the MUSIC can be applied to here for estimating the DoAs θ1, . . . , θK .
Correction: Denote y[n] = AS[n] + w[n] where

A =
[
a(θ1) a(θ2) · · · a(θK)

]
S[n] =


s1[n]
s2[n]
...

sK [n]


2
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We have

Ry[n] = E[y[n]y[n]∗] = E[(AS[n] + w[n])(S[n]∗A∗ + w[n]∗)]

= E[AS[n]S[n]∗A∗] + E[AS[n]w[n]∗] + E[w[n]S[n]∗A∗] + E[w[n]w[n]∗]

w[n] is white with 0 mean and correlation matrix σ2
wIM , so

Ry[n] = E[AS[n]S[n]∗A∗] + σ2
wIM

A is invariant, so E[AS[n]S[n]∗A∗] = AE[S[n]S[n]∗]A∗. Therefore

Ry[n] = AE[S[n]S[n]∗]A∗ + σ2
wIM

We assume E[S[1]S[1]∗] ≈ · · · ≈ E[S[N ]S[N ]∗] ≈ 1
N SS∗ hence

Ry[n] ≈
1

N
ASS∗A∗ + σ2

wIM =⇒ R̂y =
1

N

N∑
n=1

y[n]y[n]∗ ≈ 1

N
ASS∗A∗ + σ2

wIM

.. We want to find {θk}k starting from R̂y which we can construct with the received signals. Analogically
with MUSIC from the lecture, denote zi = eiπδ sin(θi), we have

A =


1 1 · · · 1
z1 z2 · · · zK
...

... · · ·
...

zM−1
1 zM−1

2 · · · zM−1
K


A is Vandermonde matrix. Since K ≤ M , A is always full column rank. Thus A∗ is full row rank.
σ2
k > 0 for all k, we know SS∗ is invertible. So Range(ASS∗A∗) = Range(A).

ASS∗A∗ is Hermitian. Denote the EVD of ASA∗ as

ASS∗A∗ =
[
V1 V2

] [Λ1

0

] [
V ∗
1

V ∗
2

]
where

[
V1 V2

]
is unitary and Λ is real-valued diagonal.

We know {a(θk)}k span Range(ASS∗A∗), therefore Span{a(θ1), · · · , a(θK)} = Range(V1). Then

R̂y =
[
V1 V2

] [Λ1

0

] [
V ∗
1

V ∗
2

]
+ σ2

wV V ∗

=
[
V1 V2

] [Λ1 + σ2
wIK

σ2
wIM−K

] [
V ∗
1

V ∗
2

]
Solution : we can do EVD of Ry and find V2, since V2 should correspond to some significantly small
eigenvalues. Then with a dense enough discrete sequence of all θ ≥ 0 we calculate

f(θ) =
1

∥a(θ)∗V2∥

if some θ ∈ {θk}k that we want to find, we will see a peak on f(θ) .

2. Set K = 3, θ1 = 0◦, θ2 = 30◦, θ3 = −60◦, M = 10, N = 500, σ2
w = 1, that for all k ∈ K,

sk[n] ∼ N (0, σs) with σs = 1 and that sk[1], . . . , sk[N ] are all independent from one another. After
generating the sequences sk[n] and w[n], n = 1, . . . , N , implement MUSIC algorithm and illustrate
its performance via appropriate plots. Try different values of K,M,N and σw and discuss how these
parameters affect the algorithm performance.

For the second item, please print your codes and append them to your HW solution report. Both the
logic of the presented discussion and readability of your codes will be take into account for the grade.
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