Matriz analysis - CSC6119 - CIE6002

Final Exam

May, 13" 2024

Time Limit: 10:30 am - 12:30 pm.
No books, course notes nor electronic devices are allowed.
The problems are on the other side of the paper.

Upon finished, the examination paper has to be submitted together with your answer book.
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Course check (40%)

1. Define what does it mean that two norms are equivalent. What happens in finite dimensional vector
spaces like M, 7

2. Give the definition of matrix norm and spectral radius, give their relation and prove it.

3. Given a matrix A with all entries strictly positive, what can be deduced on the eigenvalues of biggest
modulus and on their associated eigenspace? (Put together the 3 Perron Frobenius results).

4. Given A, B € H,, define the notation A = B and prove:

e Given any invertible matrixﬂ PeMy, PAP>B = A*» P~*BP L
e AB>0 < 0<A'=<B1

5. Provide the definition of the tensor rank.

Problem 1 (25%): Normal matrices.
In this problem we will work with so called “normal matrices” that are matrices A € M,,(C) satisfying:
A*A = AA*.

Let A = [a;;] € M, have eigenvalues Ay, ..., A\, (possibly equal, we do not assume here that A is diagonal-
izable). We are going to show that the following statements are equivalent:

(a) A is normal.
(b) A is unitarily diagonalizable (i.e. there exists U unitary such that U* AU is diagonal).
(c) ZZ]‘:1 laij|* = 2202 [Nl

(d) A has n orthonormal eigenvectors.

Answer the following questions:

1. Show that (b) = (c).
Correction: If there is a unitary V such that A =VAV* and A = diag(\1, ..., \,), then:

S o = (A" A) = tr(A*A) = 3 Al
i,j=1 =1
(]

2. Show that any diagonal matrix is normal. Show that any matrix unitarily similar to a normal matrix
is also normal.

3. Show that (d) = (a) Correction: Let us denote u,...,u,, the n orthonormal eigenvectors of
A respectively associated to the eigenvalues A1, ..., \n. The unitary matriv U = (uy,...,u,) and
the diagonal matric A = Diag(\1,...,\,) then satisfies A = U*AU. One can then conclude with
Item . [

1Recall that P~* = (P*)*.
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4. Let A € M,, be partitioned as
(A Ap
A= < 0 Axn)’
in which A;; and Ass are square. Show that A is normal if and only if A;; and Aso are normal and
A12 =0.
All

Correction: If Ayy and Ayy are normal and Ao =0, then A = () A(;) and of course:

w A11 0 Ayfl 0 A11AT1 0 AT1A11 0 w
AA* = = = = A%A. 1
< 0 A22> ( 0 AL 0 AsAb, 0 AjAs (1)

Conwversely, if A is normal, then

(AMAE + A2 A7, *) —AA* = AT A = (AT1A11 *)
*

* * *
so A1 A1 = A1 A, + A1 AL, which implies that
t’f’(AiklAu) == t?”(AHAT] + A12AT2) = t?“(A11AT1> + tT(A12AT2) = tr(AT]An) + t’r’(A]QATQ)

and hence tr(A12A5,) = 0. Since tr(A12A7,) is the sum of squares of the absolute values of the entries
of Ay, it follows that A1o = 0. Then A = (AO11 A(;z) and we saw in ([f) that in that case A is normal
if and only if A11 and Ass are normal. O

5. Show that (a) = (b). Correction: Consider the Schur triangularization A = UTU*, in which
U =ui...u,] is unitary and T = [t;;] is upper triangular. If A is normal, then so is T (see Item )
The preceding results ensures that T is actually a diagonal matriz, so A is unitarily diagonalizable. [

6. Show that (¢) = (d) Correction: With the same Schur triangularization A = UTU* as in
the previous solution, the diagonal entries of T are A1,...,\, in some order, and hence tr(A*A) =
tr(T*T) = Y20y [Nl? + 205 [t Thus, (c) implies that 37, _; [tij|* = 0, so T is diagonal. The
factorization A = UTU* is equivalent to the identity AU = UT, which says that Au; = A\ju; for each
i=1,...,n. Thus, the n columns of U are orthonormal eigenvectors of A. O

Problem 2 (25%): Sylvester equation.

Let us consider A, B,C € M,,.

1. Given a matrix M € M,, ,, define a vectorization procedure of M (Vec(M) € CP™). Vectorize the
equation AX + XB = C, X € M, and give the conidition for existence and uniqueness of the solution
X € M,,. Express Vec(X) with the Kronecker product of A and B. Correction: For a matriz

M =ci,...,cn] € My with columns ¢; € C™, j=1,...,n, we define
C1
C2
Vee(M) := | . | e C™™.
Cﬂ,

The vectorial form of the equation is GVee(X) = Vec(C) with G = I, ® A+ B I,,. The existence and
uniqueness of X is a consequence of the invertibbility of G which happens if and only if A and —B do
not have common eigenvalue. In that case: Vec(X) = G~ Vec(C). O

2. Show that Z : t — e!ACetP is solution to the differential equation:

dz
— =AZ+7ZB
dt +
Z(0)=C
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Correction: As the solution to such differential equations exists and is unique, let us simply check
that:

dz
o= AetCelB 4 A CBe!P = Ae!ACe!P 4 A Ce!PB = AZ + ZB, (2)
since B and eB commute. Of course one also has Z(0) = e"4Ce’B = C. O

. Given d € N and A € C let us denote J4(\) the Jordan block defined as:

A1 (0)
Ta(\) = o € My,
o
(0) A
d—1
Lot C=y
express et/4()) . Correction: e!7/¢(0) = A o O
. t
(0) 1
. Deduce that when A and B only have strictly negative eigenvalues, X=- fooo etACetBdt (we assume

that this integral is well defined). Correction: Integrating (E), we know that:

oo (oo}
Z(0) — tlim Z(t)=A (—/ etACetht> + (—/ etAC’etht) B. (3)
Recalling that Z(0) = C, we are simply left to show that lim;_o, Z(t) = 0. Let us then introduce
A = P YJ,P and B = Q'JpQ, the Jordan decomposition of A and B, where P,Q € M, are
invertible matrices and Ja.Jp € M, are block diagonal matrices with Jordan blocks on the diagonal.
We see directly from Itemﬂ that if A < 0, then:

td—l
(d=1)!

lim et/¢) = lim e ’ ’ =0.
t—o00 t—o0

(0) 1
The same way, since Ja,Jp diagonal entries are strictly negative (they are the eigenvalues of A, B):

lim €4 = lim P~ 'et’e M p = and lim et? = 0.
t—o0 t—o0 t—o0

Finally one has the identity:

lim Z(t) = lim etACet? =0,

t—o00 t—o0

which allows us to conclude thanks to (E) O

. Show that if A is Hermitian, then e” is also Hermitian. Show that if A is positive semi-definite then e

is also positive semi definite. Correction: [t is a clear consequence of the definition of the exponential:
> Ak
A A

e
k=0
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6. Show that if B = A* and —C' is Hermitian positive semi-definite then X is also positive semidefinite.
Correction: We already saw in the course that if B = A* and C Hermitian, then X is also Hermitian.
If moreover C' is positive semidefinite, then for all u € C™:

00
wXu=— / u etACet A udt > 0.
0

Problem 3 (10%): Schur complement.

1. Let us consider a matrix Ay € My, A1g € My, p, A1a € My, and Ay € My, . Assuming that Ay
is invertible, compute the product

I 0\ [A1n A\ (I —A'A:n
—A21A1_11 I Aoy Agg 0 I ’
and deduce that A = (‘3; ﬁ;;) is invertible if and only if its so called “Schur complement” S =
Aoy — A21A1_11A12 is invertible.

Correction: A simple computation gives us:
I 0\ (A1 A\ (I —AAL\  [(An 0
7A21A1711 I Agl A22 0 I ’ 0 A22 - A21AI11A12

2. Given X € M, 4 let us introduce

I, X
K= [XP* Iq:| € Myiq.

Show that K is positive definite if and only if X is a strict contraction (its singular values are all

strictly lower than 1).
Correction: We see from the Schur identity that K is positive definite iif I, — X*X > 0 which is

again equivalent to I, = X*X and I, > 01(X*X), where o1 is the biggest singular value of X. O

3. Given two positive semidefinite matrices A, B € M,,, show that the three following properties are
equivalent:
(a) A~ B

(b) p(A1B) <1
(¢) There exists a contraction X € M,, such that B = A2 X Az,

Correction:  Assume (a), then I, = A"2BA™2 and 1 > o(A~2BA~2) which implies (C) with
X = A~2BA~3. Besides note that since B, A are Hermitian:

T1(AT2BATE) = Apax (A7 2 BAT2) = \pax (A7 B),
which provides (b) — it is actually an equivalence. Now if we assume (c):
ATIB=ATTAS XA = ATEXAS,
which means that A~'B is similar to a contraction, therefore o1(A™1B) < 1 and one can deduce
(a). O
4. Let H = ( ;A B) € M,;4 be Hermitian with A € M, and C € M,. Show the equivalence:
(a) H is positive definite.
(b) A is positive definite and C' — B*A~1 B is positive definite.
(c) A and C are positive definite and p(B*A~1BC~1) < 1.

Correction: Simple consequence of the previous results. ]



