Lecture 1

Matrix analysis: general notions

1 Notations
o N: set of positive integers: N = {0,1,2,...}. Below we consider n,p, m € N.

o [n]: [n]={1,...,n}.
o &,: the symmetric group: the set of permutations of elements of [n] (i.e. the set of all the bijections
from [n] to [n], there are n! permutation in total). When we want the symmetric group to act on a

given finite set I different from [n], one can note &y the set of permutation of this set. Note that
S, =6y

e Sgn(o): Signature of a permutation o € &,; it is equal to +1 if the permutation o can be obtained
with an even number of transpositions (exchanges of two elements) otherwise, it is equal to —1.

o Given two sequences (ap)nen, (bn)nen € RI}I_, we write a,, = O(b,,) if there exists a constant C' > 0 and
an integer ng such that whenever n > ng we have:

an, < Cb,.

e R : Real valued space.
e C: Complex-valued space.

¢ K: Either R or C.

0
o Oyt forz,yeC,d,, = { » 7§y,.
L z=y,
o R” (resp. C™): n-dimensional real (resp. complex) space.

o M, (resp. M, (R)): Set of p x n complex (resp. real) matrices, M, = M, ,. Some authors use
the notations CP*™ and RP*™ that it are useful to know. We note 0 the null matrix of M, .

o Any element x € R" (or z € C") is identified with a column matrix of My, (one calls that column

vector). There are no “row vectors”. We note z1,...,z, its entries:
T
xTr =
In
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Let I, € M,, be the identity matrix:

1 (0)
In =
(0) 1
Given i € [n], let us note e; the i-th column of I, i.e., I, = [e1,...,e,]. The dimension n of each

(€i)ie[n) is not specified in the notation, it can be deduced from the context.

Given a matrix A € M, ,, we note (A;;)icp)jem) € CP its entries, Aq,..., A, € M,;1(C) (or

ai,...,an € CP) its columns and Ay.,..., A, € M; ,(C) its rows:
A1,1 Al,n A,

A: :(A1,7An):(alan):
Apr o Ay, 4,

The transpose and the hermitian transpose of A € M, ,, are respectively noted:

Apg o Ay, Ay oo Ay,
AT = ol e My and A = D € My,

Al,n T Ap,n Al,n T Ap,n
where for any z € C, z = R(z) — $(2)i is the complex conjugate of z.

Matrix Product: Given matrices A € M, ,, and B € M,, ,,, the matrix product AB is defined as a
matrix C' € M,, , with entries:

m
Cij=Y_ AixBi;.
k=1

Note the simple expressions, for any i € [p] and j € [n]:

C=> AyB, C, = ABj, and Ci. = AiB,
k=1
Given i € [pl,j € [n]: Eij=ee] =[0,...,0 ,e;, 0,...,0 ] € M, . The dimension p x n of each
N—— N——
j—1 columns n—j columns

(Ei,j)iclp),jeln) is not specified in the notation, it can be deduced from the context.

The trace of a square matrix A, denoted by Tr(A), is the sum of its diagonal elements:

Tr(A) = Z Aii.

Detfinitions

Vector Space: Given a scalar field K, a set V' endowed with a sum and a scalar product with elements
of K is said to be a vector space iif the following properties are satisfied:
1. Stable through Addition: For any two vectors  and y in V, the sum z + y is also in V.

2. Stable through Scalar Multiplication: For any scalar o € K and vector x in V, the product
ax is also in V.

3. Zero Vector: There exists a zero vector 0 in V' such that x + 0 = x for any vector x in V.

2
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4. Additive Inverse: For every vector x in V, there exists an additive inverse —z such that
z+ (—z) =0.

Linear Combination: Let x1,zo,...,x, be n vectors of a vector space V. A linear combination of
these vectors is an expression of the form:

Y =021+ 2o+ ...+ CrhTp,
where ¢y, ca, ..., ¢, are scalars. By definition of a vector space, y € V.

Subspace of a Space Let V be a vector space. A subset U of V is called a subspace of V' if it is itself
a vector space with respect to the vector space operations of V.

Sum of subspaces: Given two subspaces F, G, the sum F' + G is the subspace:
F+G={z+y,x€F,ycG}.

Ifforanyx € Flye G x+y=0= x =y =0, the sum is said to be “direct”, and one usually denote
F @ G instead of F + G.

Span of Vectors: The span of a set of vectors {v1,va,...,v,}, denoted by Span(vy,va, ..., v,), is the
set of all possible linear combinations of these vectors. If one work with the scalar field K, one will
also use the notation:

Span(vy,ve, ..., v,) = Koy + -+ + Ko,

Generative Families of Vectors: A family of vectors {vy,va,...,v,} is said to be a generative
family if the span of this family is the entire vector space.

Linearly Independent: A set of vectors {vy,ve,...,v,} is said to be linearly independent if the only
solution to the equation cjvy + covs + ... + ¢,v, = 0 is the trivial solution ¢; = co =... =¢, = 0.
Orthogonal family: A set of vectors {v1,va,...,v,} is said to be orthogonal if each pair of distinct

vectors is orthogonal, i.e., vjv; = 0 for all ¢ # j.

Basis: A basis of a vector space V is a linearly independent generative family of vectors. In other
words, a set of vectors {v1,va,...,v,} is a basis for V if it spans V and is linearly independent.

Dimension of a Subspace: The dimension of a subspace U, denoted by dim(U), is the maximum
number of linearly independent vectors in U. It is also the number of vectors in any basis for U (see
Subsection B.1}, Item ).

Norm: Let V be a vector space over the field of real or complex numbers. A norm on V is a function
I -1l : V — R satisfying the following properties for all vectors u,v € V and all scalars o € R or C:

1. Non-negativity: ||u|| > 0 and ||u| = 0 if and only if u = 0 (the zero vector).

2. Scalar Multiplication: |au| = |a|||u|.

3. Triangle Inequality: |u+ v|| < |ul + v

A vector space equipped with a norm is called a normed vector space. Euclidean Norm:

U1
V2
The Euclidean norm (or 2-norm) of a vector v = | . | in C", denoted as ||v|| or ||v]|2, is defined as:

Un

o]l = V]vi]2 + [va]2 + ... + [va]? = Vv*o.

3
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Given p > 0, the || - ||, norm is defined as:

[vllp = (for[? + Jvz]” + ... 4 on[?) ¥
The || - ||oo norm is defined as:

|v]|co = max (v1,va,...,v,).

Orthogonal Complement: For a subspace S C R™ the Orthogonal Complement is the subspace of
R™ defined as:
St ={yeR™: R(y*z) =0,Vz € S}.

Orthonormal Basis: A basis {v1,v,...,v,} of a vector space V is called an orthonormal basis if it
is orthogonal and each of its vectors is of unit length, i.e., ||v;|] = 1 for all i.

Coordinates of a vector in a basis and representation of a matrix in a basis:

Let v be a vector in a vector space V, and let B = {v1,va,...,v,} be a basis for V. The coordinates
of v in the basis B, denoted as [v]3, are the unique scalars ¢1,cs, ..., ¢, such that:

V= C1V1 + CoVg + ...+ CrUy.

The vector v can be represented as a column vector in terms of its coordinates in the basis B:

(&1
2
[vls =

Cn
Given a matrix A =€ M,, ,,, the representation of A in B is defined as:

[Alg = ([Av1]s; - - -, [Avn]B) -

Elementary matrices: We consider below i, j € [n] such that ¢ # j and A € K:

1. Row/column Swap Matriz
Pij =1, .. €i—1,€5,€i41,..,€j—1,€i,€j41,-..,€n] € My.
2. Row/column Scaling Matriz
M;(N) :=le1,. .-, €i-1, A, €11, ..,€n] € M.
3. Row/column Addition Matriz
Gij(A) =1, + AE;j = [e1,...,€i—1,€ + Aej, i1, ..., 5] € M.

Image of a Matrix (or Range Space): For a matrix A, the image, or range space, denoted by
Im(A), is the set of all possible linear combinations of the columns of A.

Rank of a Matrix: The rank of a matrix A, denoted by Rk(A), is the maximum number of linearly
independent columns (or rows) in A. It is equal to the dimension of the column space (or row space)
of A.

Kernel (or Null Space): The kernel, or null space, of a matrix A, denoted by ker(A), is the set of
all vectors x such that Az = 0.

Invertible Matrix: A matrix A € M,, is said to be invertible or non-singular if there exists an inverse
matrix A~! such that AA™1 = A=1A=1,.
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e Singular Matrix: A square matrix A is said to be singular if it is not invertible. In other words, A
is singular if there exists no inverse matrix A~! such that AA=' = A=A = I, where I is the identity
matrix.

o Injective/Surjective Matrix: A rectangular matrix A € M, ,(K) is said to be injective if Ker(A) =
{0}. It is said to be surjective if Im(A) = K".

« Eigenvalue and Eigenvector: Given A € M, a scalar X is called an eigenvalue of A if there exists
a non-zero vector v, called an eigenvector, such that:

Av = .
The eigenspace F) associated to A is the set of eigenvectors associated to lambda, it is exactly:

Ey = Ker(A — AI,).

e Spectrum, spectral radius: The set of all A € C that are eigenvalues of A € M,, is called the
spectrum of A and is denoted by Sp(A). If not specified, Sp(A) is the set of complex eigenvalues of A
(that is always non-empty unlike the set of real eigenvalues, see Subsection B.§, Item ). The spectral
radius of A is the nonnegative real number p(A) = max{|X| : Sp(A)}. This is just the radius of the
smallest disc centered at the origin in the complex plane that includes all the eigenvalues of A.

o Triangular Matrix: A square matrix T is said to be upper triangular if all its entries below the main
diagonal are zero, i.e., T;; = 0 for ¢ > j. Similarly, T is said to be lower triangular if all its entries
above the main diagonal are zero, i.e., T;; = 0 for 7 < j.

e Change of Basis Matrices:

Let B = {wy,ws,...,w,} be a base for the vector space V™. The change of basisﬁl to B is performed
thanks to a “change of basis matrix” P defined by:

P = (wy,ws,...,wy,),

It is invertible thanks to Subsection @ Actually any invertible matrix can be associated to a basis
and therefore be seen as a change of basis matrix.

e Similarity Between Matrices: Two square matrices A and B are said to be similar if there exists
an invertible matrix P such that:
B=P AP

We will see in Subsection @, Item @ that B is actually the representation of A in the basis composed
of the columns of P.

o Diagonalizable Matrix: A square matrix A is said to be diagonalizable if it is similar to a diagonal
matrix (i.e., if there exists an invertible matrix P such that P~* AP is a diagonal matrix or equivalently
if there exists a basis B such that [A]g is diagonalizable).

o Triangularizable Matrices: A square matrix A is said to be triangularizable if it is similar to
an upper triangular matrix (i.e. there exists an invertible matrix P such that P~1AP is an upper
triangular matrix or equivalently there exists a basis B such that [A]p is triangular).

e Orthogonal, unitary Matrices: A square matrix Q € M,, is called orthogonal if its transpose
is equal to its inverse, i.e., QTQ = QQT = I,, where I, is the identity matrix. A square matrix
U € M, (C) is called unitary if its conjugate transpose U* is equal to its inverse.

e Symmetric, Hermitian Matrices: A matrix P € M,, is called symmetric it it is equal to its
transpose (PT = P). For complex matrices, a square matrix H € M, (C) is called Hermitian if its
conjugate transpose (adjoint) is equal to itself, i.e., H* = H. Be careful, the two notions are not
equivalent for complex matrices (il,, is symmetric bit not hermitian).

IWe will later see in Subsection @, Ttem @ that given a matrix A € My, [A]g = P~1AP.
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o Positive Semidefinite Matrices: A symmetric matrix P is said to be positive semidefinite if for
any vector x # 0, the quadratic form 27 Pz > 0. In the case of Hermitian matrices H, the condition
isz*Hzxz > 0.

e Nilpotent Matrices: A matrix A € M,, is said to be nilpotent if there exists an integer » > 0 such
that A" = 0.

e Determinant of a Matrix: Given A € M,,, we note det(A) or |A], the determinant if A defined
below with the Signature formula of Leibniz:

det(A) = Z Sgn(g)Al,U(l) e Amo’(n)

ceS,

o Minors: The (7, 7) minor of A will be noted |A_; |,and is defined as the determinant of the matrix
obtained by deleting the i*® row and j* column of A:

Ain o A Avjr1 0 Aig
A= A1 o Aisiior Aicigr o Aican
! Aiin o Aipg—r A o Aigan
Apn Apj—1 Apjrr - A

o Cofactor matrix or Comatrix: Given a matrix A € M,, let us introduce for all i, j € [n] the scalar
Ci; = (=1)"|A_; ;|, where |A_; ;| is the (i, ) minor of A, then the matrix Com(A) = (Cj ;); jefm) 18
called the comatriz of A.

o Monomial polynomial: A monomial P is a polynomial of K[X] that lets only appear one exponent
of X, P writes aX¥ for some a € K, k € N.

e Degree of a polinomial: The degree of a polynomial P denoted “deg P” is the highest exponent of
the monomials appearing in the expression of P.

e Monic polinomial: A monic polynomial is a non-zero univariate polynomial (that is, a polynomial
in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is 1.

e Elementary polynomial: An elementary polynomial is a polynomial of degree 1 that writes a1 X +ag,
for two scalars ag, aq, a1 # 0.

o Polynomial of matrices: A polynomial P = a, X" + --- + a1 X + a9 € C[X] applied on a matrix
A € M,, is the matrix:

P(A) = a A" + -+ a1 A+ agl, € M,,.

e Characteristic Polynomial of a Matrix: The characteristic polynomial of A € M,, is the polyno-
mial x4 given by#:
xa(X) =det(X1I, — A) € C[X],
if Ae M,(R), xa(X) € R[X].

e Minimal annihilating polynomial: Noting K = C or K = R, the nonzero monic polynomial in
K[X] which annihilate A and has least degree is called the minimal annihilating polynomial of A in
K[X].

e Eigenvalue multiplicity: Given a matrix A having an eigenvalue A, the dimension of the eigenspace
FE), associated to A is classically called the “geometric multiplicity” of A and must be compared with the
“algebraic multiplicity” of A\ which is the number of times the factor X — A appears in the characteristic
polynomial x 4 of A.

2Some authors rather define the characteristic polynomial as x 4 (X) = det(A — XI,,), but we prefer our choice that produces
monic polynomial.
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3 General properties.

3.1 Basis, dimension

In what follows, V designates a K-vector space.

1. m® Given k + 1 vectors w,vy,...,vp € V, if w = Zle Awv; and A; # 0, then Span(w,ve,...vE) =
Span(vy,va, ... vg). Proof: One already knows that Span(w,vs, ... v;) C Span(vi,ve,...v) since w is
1

. . . . k . . . .
a linear combination of vy, ..., vk, besides vy = >V (w—=3"7_5 Aiv;) is a linear combination of w,va, ... vy

which concludes the proof. ]

2. Let W = {wy,...,wy} and U = {uq,...,un} be finite subsets of a vector space, and let wy,...,w,
be linearly independent. If W C Span{us,...,um}, then n < m, and n elements of U, if numbered
appropriately, can be exchanged with n elements of W such that

Span{wy, ..., Wn, Unt1y ... Um } = Span{us, ..., Un, Unt1, .- Um -

In other words free families of vectors spaces have always less elements than generative families.

Proof: By assumption, wy can be expressed as a linear combination of {u,...,um} with non-zero
coefficients. Without loss of generality, after renumbering if necessary, we assume the coefficient of uq
in this linear combination is non-zero. By Item |1, this gives us

Span{wy, us, ... U} = Spanf{uy, ug, ..., Up}.
Continuing this process, we assume that we have exchanged vectors ui,...,u, with wy,...,w, such
that
Span{wy, ..., Wr, Upi1y ...y Um = Span{uy, ..., Um}.

By assumption we have w1 € spanfuy, ..., Uy}, and thus

T m

Wyl = E Aw; + E it
i=1 i=r41

for some scalars A1, ..., Ay, One of the scalars Api1, ..., Ay must be nonzero (otherwise w,41 would
be in span{ws, ..., w,}, which contradicts the linear independence of w1, ..., w,, ). After an appropriate

renumbering, we have A\.41 # 0, and Item (1| yields:
Span{wy, ..., Wei1,Upso, ... Up} = Span{uy, ... Uy},
Eztending this to r =n — 1, we have

Span{wi, ..., Wy, Unt1y ..y Umt = Span{uy, ..., um},
which implies that n < m. ]

3. m All the basis of V' have the same number of elements. Together with Item E, one deduces that in
a space of dimension n, free families have n or less than n elements and generative families have n or
more than n elements. In particular, the dimension of K™ is well defined and equal to n ({e1,...,e,}
is a basis of K"). Proof: Let us assume that we are given two basis {vy,...,vx},{wy,...,w,} C V.
Since both families are free and generative, Item |4 allows us to set that n < k and k < n which implies
n = k. It is straight forward to show that eq,..., e, is linearly independent and generative in K",
therefore dim(K") = n. O

4. m® Given n linearly independent vectors {v1,...,v,} in a vector space V, if V' \ Span(v1,...,v,) # 0
then Vw € V' \ Span(vy,...,vn), {v1,...,0,,w} is free. Proof: Considering w € V'\ Span{vy, ..., v,},
one could show that vy, ..., v,,w are also linearly independent. Indeed if there exist aq, ..., 0,41, such
that aqvy + -+ - + aprw = 0, then:
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(a) if apy1 #0 , w= Oé_il (yv1 + - + apvy) € Span(vy, . .., v,) which contradicts our hypothesis.
(b) if apy1 =0 then cyvr + -+ + apv, = 0 and therefore ap = -+ = a,, = 0 by freeness of v1, ..., v,.

That proves that {vy,..., vy, w} is free.

O
5. m We assume here that dim(V) = n. A family of n vectors B = (v1,...,v,) is free iif it is a basis. A
family of n vectors B = (v1,...,v,) is generative iif it is a basis.
Proof:

(a) Let us assume that B is free, if V is different from Span(B) C V, then considering v,11 €
V'\ Span(B), we know from Item that (v1,...,Un,Vnt1) @s free, which contradicts Ttem .
(b) Let us assume that B is generative. If we assume that there exist some coefficient oy, ..., ap, € R
such that ccyvy + -+ - apv, = 0 and a certain i € [n] such that o; # 0. Then v; = (%_(Zj:u a,v;) €
A B
Span(vi, ..., Vi—1,Vit1, ..., ), that would implies that (v1,...,0V;—1,Vi41,...,V,) 1S generalive
which contradicts again Item

O

6. mw Basis extension Theorem. Any set {v1,...,vp} C V of k < n linearly independent vectors
can be extended to a basis of V. Proof: Iteratively for I € {k+ 1,...,n}, one can consider v, €
K™\ Span(vy,...,v—1), then ifvy, ... ,vi_1 are linearly independent, we know from Item that vy, ..., v
are also linearly independent. We continue the process until | = n. O

7. e Given two subspace V,U, if V C U and dim(U) = dim(V') then U = V. Proof: Any basis B of
V is a free family of U of dim(U) elements, therefore Item | allows us to set that it is a basis of U,

which means U C Span(B) = V. O
8. m Given two subspace in V, U, let us denote By = (u1, ..., Udim) and By = (v1, ..., Vdim(v)), T€spec-
tively, a basis of U and V. If U and V' are in direct sum then B' = (u1, . . ., Ugim(w), V1, - - - » Vdim(v)) 1S @
basis of U®V (and dim(U) + dim(V) = dim(U 4+ V')). Conversely, if dim(U) + dim (V) = dim(U + V),
then U and V are in direct sum. This property generalises to k subspaces Uy, ..., Uk.
Proof:
(a) Let us assume that U and V' are in directt sum. We already know that B' is generative U4V, let us
then show that it is free. Assuming that there exists some coeffincients ax, . .., Qdgim), B1, - - -, Bdim(v) €
R such that:

QU1 + -+ F Qdim(U) Udim(U) + B101 + - + Bdim(v) Vdim(v) = 0
The fact that U and V' are in direct sum then allows us to deduce that:
oauy 40+ Adim (U) Udim(U) = 0
51”1 +-+ Bdim(\/)vdim(\/) - 07

which implies that:
a1 == Qgim@) =0 and Bi == Bam) =0,

which finally allows us to conclude that B’ is free, and therefore a basis of U + V.

(b) Let us assume that dim(U + V) = dim(U) + dim(V'). Then B’ is generative of U +V and has
dim(U) + dim(V) = dim(U + V) elements, that allows us to conclude that it is a basis of U +V
thanks to Item |]. Now, given x € U and v € V such that x+y = 0, expressing x and y as a linear
combination of elements of, respectively By and By, allows us to express the sum x +y =0 as a
linear combination of elements of B’ finally allowing us to show that x =y = 0 by freeness of B’

OJ
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9.

m Given two subspaces U, V:

dim(U 4+ V) = dim(U) 4+ dim(V) — dim(U NV)

10. m Two subspaces U,V are in direct sum if and only if U NV = {0}. Proof: Consequence of Items B
and H O
11. mwe Gram-Schmidt. Given a basis {z1,...,z,} of R", there exists an orthonormal basis {z1,..., 2.}
such that for all k& € [n], z; € Span(xy,...,2x). In particular if one introduces the matrix X =
(1,...,2n) and Z = (21, ..., 2,), there exists an upper triangular matrix 7" such that:
7 =XT.
Proof: Define y; = x1 and choose
o
(Y1, 91)
to normalize z1. Define yo = xo — (x2,21)21 to ensure ys is orthogonal to z1, and choose
Y2
29 = ————
(y2,2)
so that zy is normalized and orthogonal to z1. Continue similarly. After determining zi, ..., 2zx_1, let
Yk = T — (Th, 2k—1)2k—1 — - - - — (Tk, 21)21,
so that yi is orthogonal to z1,...,2r_1, and again normalize yy, to obtain zj.
oW
(Y Yr)
Continue until all the desired orthonormal vectors z1, ..., z, have been produced. ]
12. m® Dimension Theorem (Rank-Nullity Theorem): Given A € M,,(K):
dim(Im(A)) + dim(Ker(A)) = n.
Proof: With Subsection , Itemla (basis extension Theorem): take (v1,...,v,) a base of ker A C K".
Now completing it in a base (vi,...,Vp, Upt1,...,0,) of K, one can express:
AK") = A(Kvq) + AKwvg) + - - + A(Kvp) + A(Kvpy1) + -+ - + A(Koy,)
= KAvpp1 + - - + KAv,.
Let us then show that Avpyq,..., Av, is free. It we assume that there exist apy1, ..., 0y, such that
app1Avpp1+- - FapAv, = 0, then it means that apr1vpe1 +- -+ v, € ker(A)NSpan(vpts,. .., v,) =
{0}, which then implies cpy1 = -+ = o, = 0. Finally, Item H allows us to set:
dim(KerA) + dim(ImA) =p+ (n— (p+ 1) + 1) = n = dim(K").
O
3.2 Orthogonal complement
Let S € K™ be a subspace of K™:
1. m SN St ={0}. Proof: Given X € SN S+, ||z|?> = 2%z =0 thus x = 0. O
2. me K" = S @S+ (direct sum) and therefore dim(S) + dim(S+) = n, thanks to Subsection @ Item E
Proof: It is a consequence of Gramm-Schmidt (Subsection |3.1, Item |11), we consider an orthonormal
basis of S and we extend it to get an orthonormal basis of K™, then it is straightforward to see that all
the added vectors belong to S* and S @ S+ = K". O

9
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3. m® (S1)t = S. Proof: Given_x € S, for all y € S+, a*y = 0, therefore z € (S*)* and S C (S+)*.
Now since we know from Item |4 that S ® S+ = S+ & (S+)L, Subsection @, Itemﬂ allows us to_set
that dim(S) = dim((S+)1) and the inclusion S C (S1)* allows us to conclude with Subsection 5.1,
Item |1. O

4. mIf 8 C Sy, then Sy C Si-. Proof: Let us assume Sy C Sy and consider x € Sy-. For any y € S1,
our hypothesis allows us to set that y € Sy, and therefore R(y*x) = 0 which means that x € Si-. ]

5. m®e Cauchy-Schwarz Inequality: Given u,v € C™, the Cauchy-Schwarz Inequality states:
R(u ) < lulflv]l
Proof: Let us first note that for any x,y € C™:
0< flo—yl? = (@ —y)(z—y) = 2"z +y"y — a*y — y"zz|® + |ly[|* - 2R(z"y),
since y*x = x*y. Therefore: R(z*y) < 3|z||* + 3[lyl|>. Now considering x = map ond y = o, one

directly remarks that ||z|| = |ly|| = 1 and one then obtains R(u*v) < ||ull]v]. O

3.3 Echelon decomposition

m Given a matrix A € M, ,, there exist invertible matrices Si,...,S; € M, (these are products of ele-
mentary matrices P; ;, M;(A) or G; ;(A)) such that C' := S;---S1A is in echelon form, i.e., either C' = 0

or
1‘*0*0* 0 | %

1 x| 0 *

Here * denotes an arbitrary (zero or nonzero) little row of C'. More precisely, C = [C; ;] is either the zero
matrix, or there exists a sequence of natural numbers ji,...,j, (these are called the "steps” of the echelon
form), where 1 < j; <--- < j, <mand 1 <r < min(n,p), such that

l.gj=0for1<i<randl<j<j;,
2. ¢j=0forr<i<pand1l<j<n,
3. ¢;,5, = 1 for 1 <i < r and all other entries in column j; are zero.

If n = p, then A is invertible if and only if C' = I,,. In this case A~! = S;--- ;. In all cases, 7 is equal
to the rank of A. (Proof not provided here).

3.4 Determinant
Let AB € M, (K), X\ € K. The following properties hold:

1. m det(AT) = det(A). Proof: Note that the mapping o € &,, — o~ € &,, is a bijection of &,, (it is
even an injection), therefore one has the identity:

det(A) = Z Sgn(U)Al,J(l) o An,a(n)

oeG,
- Z Sgn(o-il)ALcr*l(l) c A'ma*l(n) - Z Sg7L(U)A0(1),1 e Aa(n),n, - det(AT)-,
ce6, ceS,

10
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since Sgn(o—1) = Sgn(o). O

. The determinant is n-linear on the columns and on the rows of a matrix. Meaning that given a matrix
A= (a1,...,a,) € M,(K), given i € [n], if a; = ab; + Be;, with «, 8 € K and b;, ¢; € K™

det(A) = adet(ay,...,a;—1,b;,ai41,...an) + Bdet(ar, ..., a;—1,¢i,ai11,-..ay)

Proof: The n-linearity on the columns is a direct consequence of the signature Formula of Leibniz.
For the result on the rows, one can use Item |]. ]

. Given ¢,j € [n], ¢ # j: det(P;;A) = det(AP,; ;) = det(P;;)det(A) = —det(A). In particular we see
that det(P; ;) = —1. Proof: We assume ¢ < j. The matriz P; ;A is equal to the matriz A with a
swapping between the it and the j™ row, therefore the signature Formula of Leibniz gives us:

det PL jA Z Sgn Al o1 A’i—La; 1A],ULA1+1,<71+1 o Aj—l,aj,lAi,aj Aj+1,0'j+1 o An,an-

ceS,

Now, denoting T € &,,, the transposition between i and j (1(i) = j, 7(j) =i and for all k € [n]\ {i,j},
7(k) = k) we know that the mapping v, : 0 € &, — o1 € &, is an injection of &, therefore, one
can replace o with 1. (o) in the summand to obtain:

det Pz jA Z Sgn Z”r Al o1 " Ai*l,gi 1AJ g Az+1,ai+1 e Ajfl,aj,lAi,oiAj+1,aj+1 tre An,0n~

geS,

Noting that Sgn(i.(0)) = —Sgn(o), one recognize the determinant of A and obtain the looked for
identity. ]

. m If A has two identical rows or two identical columns, then det A = 0. Proof: We show the result
when A has two identical rows (of course the same result holds for the columns thanks to Item |1).
Simply note that if the i and the j* rows are identical with i # j, then P ;A=A and [tem 9 yields
to det(A) = det(P; jA) = — det(A) which implies that det(A) = 0. O

. det(M;(N\)A) = det(AM;(\)) = det(M;(N\)) det(A) = Adet(A). In particular we see that det(M;(\)) =
A. Proof: It is immediate:

det ]\I Z Sg’fL A1 oyttt Aifl_’gzil/\Ai_’UzAi+1_’m+1 s Aan = )\det(A)
ceS,

O

. det(Gyj(M)A) = det(AG; ;(N)) = det(G;;(N))det(A) = det(A). In particular det(G;;(N)) = 1.
Proof: The n-linearity of the determinant given in Item |4 provides:

det(AG”()\)) = det(A) + )\det(al, ey @1, A5, Ay e 1, Ay g1y - 7(Ln) = det(A).,
thanks to Item . O

. m Given a matrix A € M,, having the triangular superior block decomposition:

A= F’H ZC) , withBeM,,, CeMy, and D € My,, where n =p+gq,
then its determinant expresses:
det A = det(B) det(D)

Proof: Note that is we apply the Signature formula on A, all the o € &, such that c({p+1,...,n})N
{1,...,p} # 0 will provide empty products in the summation, one can therefore merely sum on:

Gpg={0€6Gpg|o{p+1,...;p+q}) C{p+1,....p+q}}
={0€Gprq|o({l,...;pH)={1,...,p} and c({p+1,....p+¢}) ={p+1,...,p+q}}

11
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10.

11.

Then it is quite easy to see that this set is in bijection withﬂ Sy X &ppp(q) through the map:
P 6[p] X Gp_;,_[q] — 6p7q
: o(i) ifi<p
(0,0) > i Qo
0(i) ifi > p+ 1.

The Signature formula of Leibniz then gives us:

det(A) - Z Sgn(U)Al,U(l) e An,o’(n)

ccB, 4

YooY Sgu®(0,0)A1ea) ApomApriewin) - Anpy = det(B)det(D),

€G] 0€S 1)

since Sgn(®(0,0)) = Sgn(o)Sgn(0) O

The determinant of an n x n matrix A can be expressed using the formula involving minors:

Vi€l det(A)=> (~1)"Ai ;A ;| and Vi€ [n]: det(A) = (~1)"TA; Al

i=1 j=1

where |A_; ;| is the (¢, ) minor of A.

Proof: Employing Item@ let us develop the determinant around the j*" column aj =Y Aijei:

n
det(A) = ZAi"j det (al, ey 1,64, Q541 e, an) .
i=1

Now, recalling that A_; j is the matriz A after removing the i row and the j™, we naturally denote:
A—i,j = (al,...,aj_l,ei,aj_kl,...,an). (11)

It satisfies:

Pio- Py ;A i jPiv- - Pra=

)

Therefore Itemsﬂ (mdﬂallow us to set that det(A_; ;) = (=177 (=1)7= - 1-|A_; ;| = (1) |A_; 4],
which implies the formula. The formula developed on the i™ row is deduced thanks to Item |l. ]

. m det(AB) = det(A) - det(B). Proof: According to Subsection @, we can find invertible elementary

matrices Si,...,St such that C = S;---S1A is in ils echelon form. Invoking Items {, ¥ and |, the
determinant of A can be expressed as the product of the determinants of these matrices and C, i.e.,

det(A) = det(S; 1) - - - det(S; 1) det(C),
and similarly for the product of A and any matriz B,
det(AB) = det(S; ! ---S;'CB) = det(S; 1) - - - det(S; 1) det(CB).

We consider two scenarios. If A is non-invertible, then C' and consequently C B must contain a zero row,
leading to det(C') = det(C'B) = 0. This implies det(A) = 0, and therefore det(AB) = det(A) det(B) =
0. Conwversely, if A is invertible, then C must be the identity matriz I, due to its echelon form. It

follows that det(I,,) = 1, and hence det(AB) = det(A) det(B). O
mw If A is invertible, det A # 0 and det(A™!) = #(A). Proof: Item E and the identity 1 = det(I,,)
imply 1 = det(AA™1) = det(A) det(A™1), which gives us det(A~1!) = #(A). O

mlf A e MQI det(A) = A171A272 — A172A271.

3Where we defined p+ g = {p+i,i€ g} ={p+1,...,p+q}

12
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3.5

Inverse/Transpose of a Matrix

Let A, B € M,, be two invertible matrices and C € M, ,, and D € M,, ,. The following properties hold:

1.

me (CD)T = DTCT and (CD)* = D*C*. Proof: It is simply deduced from the matricial product. If
one denotes M = DTCT € M,,,, and considers i € [n] and j € [p]: M;; = > 1~ Dy.;Cjr = (CD);,.
The hermitian transpose is simply deduced bby the distribution of the complex conjugate on the product
and on the sum (Given z1,22 € C, 2123 = Z1Z2 and z1 + 22 = Z1 + Z2). O

m® A square matrix is injective iif it is surjective. Proof: [t is a consequence of the Dimension
Theorem: dim(Ker(A)) + dim(Im(A)) = n therefore:

A surjective <= dim(Im(A))=n <<=  dim(Ker(A))=n <<= A injective.
O

m A matrix is invertible iif it is injective or surjective (which is equivalent to being injective AND
surjective). Proof: If A is invertible, then Az =0 = x = A710 =0 thus Ker(A) = {0} and A is
injective. If we assume that A is injective and surjective then the echelon decomposition of A given in
Subsection@ ensures the ezistence of an invertible matriz S such that A = SC and C has an echelon
form. Given x € Ker(C), we know that Az = SCx = 0 thus x € Ker(A) = {0} and therefore C is
injective as A. Now since C' is squared, the previous item allows to set that C is also surjective, and
therefore, the only echelon form possible for C is without the first columns of zeros (by injectivity) and
without the last rows of zeros (by surjectivity). Finally C' must have the form:

1 \ * |0 * |0 | 0 |=x
1 * [0 | E
1
C p—
0 oo
0 L 1%/

Again, since the matriz C' is a square matriz, all the “«” little rows must have zero length and
consequently C' = I,, which finally ensures that A =S is invertible. O
. m A is invertible iif its columns and its rows form a basis of K". Proof: We show the result for the
columns of A = (ay,...,a,). We assume that A is invertible and we consider n scalars oy, . .., oy, such
that cyay + -+ - + ana, = 0. This equation write matricially as Aa = 0 where a = (aq,...,a,) € K",
multiplying by A~" one the right, we see_that o = 0, therefore ay,...,a, are linearly independent
and one can conclude with Subsection @, Item |. If we assume now that ay,...,a, are linearly
independent, then the equation Aa = 0 implies a = 0 which exactly means that A is injective and one
can conclude with Item ]

. m® When p = m = n, if CD = I,, or DC = I,, then C and D are invertible and D = C~!. Proof: If

DC = I, then {0} C Ker(C') C Ker(DC) = Ker(I,,) = {0} and therefore Ker(C') = {0} which implies
that C' is injective and therefore invertible (see Item E) Multiplying by C~' on the left, one obtains
D=Ct

If CD = I, then K™ D Im(C) D Im(CD) = Im(I,) = K™ which implies that Im(C) = K" thus C is

surjective and therefore invertible. ]
. m(A71)"t = A. Proof: A~'A =1, thus Itemla allows to set that A = (A=1)~L. O
. m® (AB)™! = B7'A~!. Proof: B"'A"'AB = B™'B = I,,, we then conclude with Item E O

. e Given a scalar k: (kA)™! = ;A1 if k #0.

13
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9.

10.

11.

12.

me(AT)™! = (A7H)T and (4*)7! = (A7Y)*. Proof: Let us simply note thanks to Item H that:
(AHTAT = (AA=YT = I, and conclude with Item |, the same argument works for the conjugate
transpose. ]

Given M € M,, and denoting C' = Com(M), the comatrix of M: MCT = CTM = det(M)I,
Proof: Recall that C € M,, is defined by C; j = (—1)"F|M_, ;|. Then the matriz D = CT M satisfies:

ch Mg = S ()Ml Mi,

k=1

Consider my to be the {-th column of M, and define as in (@), the “hat” matriz:

My

52

n,n
= [ml,...,mi,l,ek,mi+1,...,mn] e R™"™.

We saw in the proof of Subsection , ItemE that det(M_y, ;) = (—1)¥T* det(M_y.;). Now, considering
the determinant’s linearity with respect to columns, we obtain

n

Di,j = Z(—l)i+k(—1)k+i1\f[kj|AAZ[,]€’Z" = det(ml, ey My, MG T 1, - - ,Tfln) = {
k=1

0, i 7 J,
det(M), i=j,
thanks to Subsection , Item , One finally obtains D; ; = §; ; det(M), and thus CT M = det(M)I,.

A similar argument relying on the determinant’s linearity with respect to rows shows that MCT =
det(M)I,. O

-1
m Given four scalars a,b,¢,d € K such that ad — ¢b # O: (Z 2) = adl - (_dc _ab> Proof:
Consequence of Item @
me Given a matrix A € M,,(K) and a basis B = (w1, ..., w,) of K", we denote P = ([w1]g, ..., [w,]|B) €

[w
M,,, the change of basis matrix to B. Given a vector z € K", [z]g = P~ 'z (denoting y = [z]s, one
has the identity = Py).

The representation [A]p of A in B is defined as:

[Alg = ([Aw1]s, . - ., [Awy]B) .
it satisfies [A]p = P71 AP and:

Ve e K": [Az]p = [A]p[r]s.
Proof: Let us simply express:

T =y1wi + - +ypw, = Py.
To prove the second result, let us express from last result:

P7YAP = P (Awy, ..., Aw,) = ([Awi]s, .. ., [Aw,]B) .

Finally, given x € K™, one has naturally:

[Az]p = P 'Ax = P"*APP 'z = [Alg[7]5.

14
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3.6 Eigenvalues

Let us consider a square matrix A € M,, with k distinct eigenvalues A1, A2, ..., Ax. We denote Ej,, ..., Ej,
the respective eigenspaces and oy, . . ., o the respective geometric multiplicities (i.e the dimension of Ey,, ..., Ey, ).

1. mw Ey, +---+ E), is a direct su .
Proof: For r € [k], let us assume that r = 1 or Ex, + --- + Ex_ is in direct sum and consider
x1 € By, ..., 2pq1 € By, all different from zero and vy, . .., apyy such that oz +- - -4 op 1204 = 0,
then applying A on the left, one obtains:

M1+ Qi A1 T = 0
subtracting this equation with A\,y1 - (121 + -+ + apy12.41 = 0), one obtains:

o1 (A — Apr)zr + o+ o (Ar — Apgr)ar =0,

which implies (since A1,..., A\, are all different from A\.11 and x1,...,x, are free by iteration hypoth-
esis): ay = -+ = a,. Then o,y also cancels (since x,41 # 0) and we deduce that Ex, + ---+ E .,
is in direct sum. ]

2. m® If A has n distinct eigenvalues then it is diagonalizable (the converse is not true).
Proof: If A has n distinct eigenvalues A\1,...,\, (n = k), then Itemﬂ allows us to set that K" =

E\,@---®E), . Considering x; € Ey,, we know that x1,. .., xz, s linearly independent and therefore_we
know from Subsection 3.1, Item {] that it is a basis of K™. Writing A in this basis (see Subsection 3.4,
Item ) gives a diagonal matriz Diag(Ai, ..., ). If A has n distinct eigenvalues A1, ..., A, we know
that:

o Forie[n], dimE), >1

o Ey\,,...,Ey, arein direct sum.

Now:

dim(Ey, @@ Ey,) =dimE), +---+dim Ey, >n=dim(K") and E) & ---® E), C K",

thus Ex, @+ @ Ey, = K™ and subsequently dim Ey, = --- = dim E\, = 1. For all k € [n], let us pick
one non zero vector in Ey, such that E, = Kovy,. Then one can easily show from Item || (Ex,,...,Ex,
in direct sum) that vy, ..., v, is free:

(anvl+"'+anvn:0) = al/Ulz"':an/Un:O = alz...:an:(l
since the vectors vy,...,v, are all different_from zero. Being a free family of n elements in a space
of dimension n, we know from Subsection 3.1, Item {] that B = (vi,...,v,) is a basis of K™. Then

Vk € [n], v, € E\,., and therefore: Avy = Agvgp = 0vy + -+ + A\gvg + - - - + Ovy,, that exactly means that
[Avi]s = Awer (0 everywhere and i in the it entry). One can then express:

A1 (0)
[Als = ([Avals, -, [Ava]s) = )

the matriz A is diagonalizable. ]

3. m A is diagonalizable iif Ele a; =M.
Proof: Let us first note that the identity >, | a; = n is equivalent to K" = Ey, & --- @ E\, thanks to
Item [ combined with Subsection |3.1, ]temsﬁ and |§. Then ’if” part is proven the same way as Item
but this time, one needs to consider in each eigenspace Ex, a basis of o elements, that, put together,
will allow to diagonalize A.

k

4Recall that it means that if there exist z1 € Exy,...,zk € B, such that 1 +---+xp =0thenz1 =--- =z, =0

15
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To show the “only if” part, let us assume A is diagonalizable and introduce the basis B = (u1 -+ uy,)
that diagonalizes A. We know that there exists k parameters v1, ... v € N such that the representation
of A is B is:

(0)
| )‘k]m

we know that Zle vi =k, our goal is then to show that Vi € [k] v; = «; (the algebraic multiplicity
dim(E),) associated to \;). For this let us show that:

EA:, = K’ua1+‘..+a7ril+1 + -4 Klu(11+-<-+(}:, .

This is done through the introduction of the change of basis matric P = (u1,...,u,) € M, and
equivalence sequence:

r€E),, = Ar—-)lz=0 <= P YA-NL)PP 'v=0 <= ([Alg—Nl,)P 'z=0

-1
<~ P 'z e K€Q1+...+aiil+] D---D K€a1+---+a7 — xr € Kua1+--~+(n,1+l D---P K?La1+.4.+a”

since Yi € [n], Pe; = u; and:

[A]B —Aily = OI%
One can then directly deduce that o; = dim(E)y,) = ~; which allows us to conclude. O

m A is diagonalizable if and only if:
Kn:E)\l @...@EAM

(in other words, K™ has a basis of eigenvectors for A). Proof: As before, consequence of Subsection ,
Ttem |§. O

m When A is diagonalizable, the determinant of A is equal to the product of its eigenvalues:

det(A) = AZTAQ? - A%k

m When A is diagonalizable, the trace of A is equal to the sum of its eigenvalues:

tI‘(A) =11 + a2 X + -+ ap k.

Polynomials

1. m A matrix A € M,,,, commutes with any P(A) where P is a polynomial of C[X| and consequently

polynomials of A mutually commute.

Euclidean Division. Given two polynomial A, B € K[X] such that B # 0, there exist two polynomials
@, R such that:

« A=BQ+R
o deg(R) < deg(B)

16
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(Proof not provided here).

3. Bezout’s theorem. If Q is the greatest common divisor of n € N polynomials Py, ..., P, (all different
from zero), then there exist n polynomials Uy, ..., U, such that:

PU +--+PU,=Q

Proof: The set of monidl polynomials D € K[X] such that there exists n polynomials Uy, ..., U, € K[X]
satisfying:

PU +---+P,U,=D (1.2)

is non empty (any of Py,..., P, with a correct scalar factorization belong to this set), therefore one
can consider the polynomial D with smallest degree satisfying this identity (since D is monic, D #0).
Given i € [n] let’s perform the euclidean division of P; with D. There exist Q;, R; € K[X]| such that
P, = DQ; + R; and deg(R;) < deg(D). Now, if one replaces D in the euclidean division by its value
given by identity (|L.9), one obtains:

Pll - (PlUl + -+ PTI,UTL) Qv + R?
Therefore:
~PUIQi — - = PiyUi 1 Qi + Pi(1 = UiQ;) — -+ — PUnQi = R;.

Now by minimality of D and since deg R; < deg D, one can deduce that Vi € [n] : R; =0, and therefore
D divides each Py, ..., P,. To show that D is the greatest common divisor, let us_simply note that if
a polynomial A € K[X| divides each Py, ..., P, then it also divides D thanks to (E) O

4. @ Fundamental Theorem of Algebra. Every non-constant polynomial of C[X] has a root in C.
(Proof not provided here)

5. m® Given P € C[X] and A € M,,, if P(A) = 0, then for any A, eigenvalue of A, P(A\) = 0. Proof:
Assuming that P(A) = 0 and considering an eigenvector x associated to the eigenvalue \ we have the

identity 0 = P(A)x = P(\)z. O

3.8 Characteristic polynomial

We consider below a matrix A € M,,(K) and denote x4 its characteristic polynomial. Be careful, geometric
(dimension of eigenspaces) and algebraic (monimial degrees in x 4) multiplicities can be completely different!
For instance A = (} %) has just one eigenvalue: Sp(A) = {1}. Now the algebraic multiplicity associated to
this eigenvalue is 2 (ya4 = (X — 1)?) when the geometric multiplicity is 1 (E; = Re;). Note that x4 = x1,
but A # I which means that the characteristic polynomial actually does not fully characterize a matrix.

1. mw® The characteristic polynomial of A is the same as the characteristic polynomial of the representation
of A in any basis of K™. Proof: Simply note from Subsection @, item |14 that given a basis B of K":

X(Als = Xp-1ap = det(X I, — P"'AP) = det(P~ (X1, — A)P) = det(XI, — A) = xa.
O

2. m The set of roots of y 4 coincides with Sp(A) and x 4 is of degree n. Proof: [t is simply a consequence
of the definition of the characteristic polynomial: x4 = det(X 1, — A) therefore x4(A\) =0< A — A,
singular < X\ eigenvalue of A. O

3. mIf has an elementary factor then A has at least one eigenvalue. In particular thanks to Subsec-
tion B.7, Item ), any matrix of M,,(C) has one complex eigenvalue.

5Recall that a monic polynomial is a polynomial whose coefficient associated to the highest degree monomial is equal to one.
Ex: X246 is monic, 2X — 1 is not.

17
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4. m Trace and determinant appear in the expression of the characteristic polynomial x4 = a,X +
a1 X" 4 ag:

an =1, an—1 = —Tr(A) and ap = (—1)" det(A).

In particular when n = 2: x4 = X2 —TrAX + A2. Proof: Let us express the characteristic polynomial
with the signature formula of Leibniz:

XA = det(XIn - A) = Z Sgn(o—)(Xal,a(l) - Al,a(l)) o (X(Sn,a(n) - An,a’(n))-

€S, 4

One sees immediately from this formula that x4 is of degree n, a, = det(I,) =1, ag = det(—A) =
(=1)""det(A) and monomials of degree n — 1 are only obtained in the sum for o = Idg,, then
Sgn(o) =1 and developing the product, one obtains a1 = —A11 — - — Ay, = —Tr(A). O

5. m® algebraic multiplicity > geometric multiplicity. Proof: The proof is similar to the proof of
Subsection Item . Considering a matric A € M, ,, one just needs to compute the characteristic
polynomial of A expressed in an extension of a basis compatible with the direct sum of the eigenspaces

B':

*

—~
o

=
*

Then, thanks to Subsection , Item H, one can express: XA = X[Aly = (X —A1)* - (X = A\p)*xc,
we see that the algebraic multiplicities are all bigger than the algebraic multiplicities. ]

18



Lecture 2

Complexity of matrix computations

Complexity of an algorithm is measured by the float-point arithmetic operations, such as addition and
multiplication, and division. For x,y € R™, A € R"*" B € R™*P:

o x!y requires m multiplications and m — 1 additions: complexity of order O(m).
o Ax requires n(2m — 1) additions and multiplications: complexity of order O(nm).

o AB requires p - n(2m — 1) additions and multiplications: complexity of order O(pnm).

Complexity of Gram-Schmidt Procedure

Given a linearly independent set ap, as,...,a, in R™, the Gram-Schmidt procedure is as follows:
Fori=1,2,...,n:

i—1
L g, =a;— > (q] a;)q;.

2. Normalize q; to obtain q; = ”qqi‘h.
Output q1,qs, ..., q, as an orthonormal set.

For each iteration ¢:

« Every q a; takes O(m).

o Computing q; takes (i — 1)O(m) + O(m).
o Computing ||q;||2 takes 20(m).
Therefore,

(1 — 1)O(m) + O(m) +20(m) = (i + 2)O(m) = O(im)

Thus, the total complexity is
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Matrix multiplication Complexity

The Strassen algorithm, published by Volker Strassen in 1969, was a groundbreaking method for matrix mul-
tiplication that demonstrated that the general matrix multiplication algorithm was not optimal. It reduced
the multiplication operations from 8 to 7 for a 2x2 matrix, thereby reducing the asymptotic complexity for
larger matrices.

[a1,1 a1,2] {51,1 b1,2} _ [01,1 01,2]

G122 ba1 bop €21 €22

Standard algorithm Strassen’s algorithm
hi=ay1bi1 hi = (a1,1 + az2)(b11 + b22)
ho = aq,1b12 ha = (az,1 + az,2)b11
hs = a1,252,1 hs = 01,1(191,2 - b2,2)
hy = al,zbz,z hy = 02,2(52,1 - bl,l)
hs = as1b11 hs = (Cl1,1 + a1,2)b2,2
he = as,1b1 2 he = (—a1,1 +az21)(b1,1 + b12)
hy = a2,2b2,1 hy = (01,2 - 02,2)(b2,1 + b2,2)
hg = a2,252,2
c1,1 =hi1+hs c1,1 =hi +ha—hs+ hy
cr2=ha+hy c1,2 = ha + hs
c2,1 = hs + hy c2,1 = ho + Ry
c2,2 = he + hs c22 =hi —ha+hs+ hs

e The Strassen algorithm achieves a reduction in the complexity of matrix multiplication through a
divide-and-conquer strategy that recursively breaks down each matrix into four submatrices. For
matrices of size N = 2", the complexity can be expressed using the recursive relation f(n) = 7f(n —
1) +©(4™), where ©(4™) represents the operations for the added and subtracted matrix combinations.
The asymptotic complexity thus becomes O(N™8:27) = O(N2-8074) < O(N?).

e Practical limitations: not efficient for small matrices due to the overhead of additional additions
and memory requirements. Plus somewhat reduced numerical stability. The algorithm is typically
used for large matrices (500 x 500) where the trade-offs are justified by the performance gains.

e There exist theoretical improvement like the Coppersmith—Winograd algorithm and its optimized ver-
sion that present a complexity of order O(N?237-). However the constant in the big O is overwhelming
and as a consequence these algorithms are useless for the range of matrices that can be handled on
today computers.

« Matrix multiplication multiplicity admits O(N?) as a lower bound because any exact multiplication
algorithm should at least make operation with the 2N? entries of the two matrices.
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Lecture 3

Polynomial characterization of
Triangularizable and Diagonalizable
matrices.

Theorem 3.1 (Schur). A matriz A € M, (C) (resp. A € M,(R)) is triangularizable with a unitary matrigd
iif its characteristic polynomial x acan be split into elementary factors (i.e. of degree 1). In partz'cularE any
matriz is triangularizible in M,,(C) (thanks to Lecture 1, Subsection |3.7, Item )

Proof. The “only if” part is obvious thanks to the definition of the Characteristic polynomial and Lecture 1,
Subsection B.4, Item [1.

The “if” part relies on an algorithmic proof which involves a sequence of reductions. Considering one root
A1 of xa (it exists thanks to Lecture 1, Subsection @, Item J) x; is a normalized eigenvector of matrix A

corresponding to the eigenvalue A;. We can extend the nonzero vector x; to form a basis {x1,y2,¥y3,.-.,Yn}
of C™.
Applying the Gram-Schmidt process, we obtain an orthonormal basis {x1, 22, . .., 2, }. These orthonormal

vectors, arranged as columns, construct a unitary matrix U;. The product U; AU; reveals a matrix with the
form

-y 7]

where A; € M,,_; and has eigenvalues \o. ..., A,.

Note now from Lecture 1, Subsection@, Item H that x4, is a factor of x 4, therefore one can repeat the
above process: consider an eigenvalue Ay of Ay, an associated normalized eigenvector x5 € C"~! and find a
unitary matrix Uy € M,,_1 such that

) A
U AU, = [02 ZJ .

1 0
Define V5 = [0 Uy

Both V5 and Uy V3 are unitary, and V5 Uy AU, V; has the form

Al * *
O )\2 *
0 0 A

We continue this process to generate unitary matrices U; € M,,_;+1,% = 1,...,n—1 and unitary matrices
Vie M,,i=2,...,n—1. As a result, the matrix U = U;VoV3---V,,_1 is unitary and U* AU yields a matrix
in the desired upper triangular form.

Tt means that there exists a unitary matrix U such that U* AU is triangular
2Because any polynomial of C[X] can be split into elementary factors, one says that C is “algebraically closed”.
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If all eigenvalues of A € M, (R) are real, then corresponding eigenvectors can also be chosen to be real.
Thus, the aforementioned steps can be performed using real arithmetic. O

Remark 3.2. The following matriz is not triangularizable in M, (R) since its characteristic polynomial
does mot admit elementary factors:
0 1
(G0

Definition 3.1 (Dense sets). Given a set V endowed with a metric d, we say that a subset S C'V is dense
inV if for allz € V., € > 0 there exists y € S such that:

indeed x4 = X2 + 1.

d(z,y) <e.

On M, ,, a natural metric can be introduced thanks to the Frobenius norm (or Hilbert-Shmidt norm)
defined for any A € M, ,, as:

|A|lF = /Tr (A*A).
Corollary 3.3. The set of complex diagonalizable matrices is denseE in M, (C).

Proof. Given a matrix A € M, ,(C) and a parameter € > 0, we know from Theorem @ that there exist
P e M,,(C)and Aq,..., A\, € Csuch that:

)\1 *
T=P'AP = )

(0) An

Let us then note:
A+ e *
A = prE p-1, with TG = . ,
(0) An +En

where €1,...,e, € (0, ﬁ] are chosen such that the scalars Ay +¢1,..., A, + &, are all distinct. Lecture 1,

Subsection @, Item E allows us to set that 7(¢) is diagonalizable, besides:

|4 - 4| = \/Tr ((4- 40" (4 - 40)) = \/Tr (Pt (r-1)" (1 -T@) P)
€1 «\ 7 €1 * 2
=|Tr =
©) en) \(0) En

Theorem 3.4 (Cayley Hamilton Theorem). x4(A) = 0.

Proof. The identity is obvious for diagonalizable matrices. Given a matrix A € M,,(C), we know that there
exists a sequence of diaonalizabe matrices (A, )nen € M, (C) such that lim A,, = A. Then the continuity of
the determinant (it is only sums and products) provides us the convergence:

0= lim xa,(4,) = xa(A),

n—0o0

which ends the proof. O

3For the metric d defined for any A, B € M,, as d(A, B) = |A — B||r, since we are in finite dimension, the choice of the
norm is not important.
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Theorem 3.5. A square matrix A € M, (K) is diagonalizable iif its minimal annihilating polynomial
P4 € K[X] splits in K[X] and has distinct rootsd.

Remark 3.6. The matriz A and B below have the same characteristic polynomial (equal to (X —1)?) but
their minimal annihilating polynomial are respectively equal to (X — 1) and (X — 1)?, that is why only A is

diagonalizable:
10 11
A= (O 1) and B = (O 1>

Proof. The “if” part is a consequence of Bezout Theorem (see Lecture 1, Subsection @ Item E) Let us
note Ai1,..., Ak, the k distinct roots of the minimal annihilating polynomial of A, P4 and introduce the
polynomials Py, ..., P, € K[X] satisfying:

Vi € [n],Pl = ﬁ(X*)\])

j=0
i
We know that Py, ..., Py highest common denominator is 1 (because none of the Aq,..., \x is root to all
Py, ..., Py), therefore, Bezout Theorem (Lecture 1, Subsection @ Item f) allows us to state the existence

of Uy,...,Us such that:
1=UPi+ -+ UxP,

and consequently I, = Uy (A)Py(A) + -+ U (A)P(A) (applying A on the right). Now considering v € R",
one sees first that:

v = Ul(A)Pl(A)U R Uk(A)Pk(A)’U,

which means that K* = Im(U;(A)Pi(A)) + -+ Im(Ui(A)Pr(A)). Besides, for any i € [k] and u €
Im(U;(A)P;(A)), Lecture 1, Subsection B.7, item m allows us to set that there exists w € K such that:

therefore u € E),, the eigenspace associated to A;. One then has the inclusion sequence:
K" =Im(U; (A)P1(A)) + -+ Im(Up(A)Pr(A)) C Ex, & --- & Ey, C K",

therefore Ey, @ --- ® E), = K" which implies that A is diagonalizable thanks to Lecture 1, Subsection @,
item 4.

Let us now assume that A is diagonalizable to show the “only if” part. There exist k distinct eigenvalues
such that K" = Ey, @ --- ® E), thanks to Lecture 1, Subsection B.§, Item {. Therefore, given v € K",
there exist vy,...,vx € K" such that Vi € [k], v; € E\, and v = vy + -+ + vg. Then, if we note P =
(X — A1)+ (X — A), one has the identity:

P(A)’U = P(A)’Ul —+ - —|—P(A)Uk, = Pl(A)(X — )\1)1}1 + -4 Pk(A)(X — )\k)’l}k = O,

with the notation Pi,..., P given before. Besides, we know from Lecture 1, Subsection @, Item E, that
for all ¢ € [k], A; is a root of P4, the minimal annihilating polynomial of A. Noting that P divides P4 and
annihilates A, one can conclude that P = P4 by definition of Py. O

4That means that there exist k distinct roots A1,..., A € K of P4 such that Pa(X) = (X — A1)+ (X — Ag).
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Lecture 4

Exponential of matrices and
Canonical decomposition

1 Exponential of matrices

Definition 4.1 (Exponential of matrices). Given a matriz A € M,,(K), the exponential of A is noted exp(A)

OT€A

and defined as:

oo Ak
GAEEE:‘ET.
k=0

Example 4.1. 1. Diagonal Matrices. Given a diagonal matriz D = Diag(A1, ..., \,) where A1,..., Ay €

/.

K the exponential of D writes:

e e g (M O} (EEonM (0 SO
DA == _—= _— c. = .. — -
- - (0) An (0) 2 k0 }n (0) e

Block Diagonal Matrices. The same identity holds for block diagonal matrices, given A € My,
d € N, d integersny,...,nq and d matrices Ay € My, ..., Aq € My, such that A = Diag(Ay,...,A,):

Af (0) e (0)

o0
A_Z . _
e’ = ! . =
k=0

o  ak) \@© e

N“p—l

Diagonalizable Matrices. Given a matric A € M, such that there exists P € M, invertible
satisfying P~*AP = D (with D being the diagonal matriz introduced in item B), the exponential of A
writes:

= (PDP~ V) X PDEP! = DF\ __ _ o
eA:kzik! :kzikl =P kzﬁ P~! = PDiag(e™,...,e*)P7L,
=0 =0 =0

Nilpotent matrices. Given a nilpotent matriz of orderl p, the exponential of N is simply a sum of
p elements:

=0

—1
N &~ NF
6157.
|
k

Tt means that NP~! # 0 and NP = 0.
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Proposition 4.2. Given two matrices A, B € M,, such that AB = BA, one has the identity
oA+B _ ,AB
This proposition relies on a the Cauchy product formula given in next Lemma.
Lemma 4.3. Given two commutingE matrices A, B € M,,, for any i € N:

i

(A+B) =% (;) AkBik,

=0

where we recall that <Z> = ¢

k

El(i—k)!

proof of Proposition @ Let us simply express regrouping the term with identical total exponent i = k + I:

(%) Ak %) Bl A2 A3 B2 B3
A B _ a4 [ - 2082 4. Z 4 4.
ete _<I§k'><§ l!) (In+A+2+3!+ )(In+B+ + =+ )

2 3!
A? B2 A3 A2B AB? B > Ak pi-k
— I, +A+B+ " L AB+— 4+ bt AW BT
R e R T R R T Z%kz%k!(z’—k)!
=1 1= =
1=2 i=3

The Cauchy product formula given in Lemma @ then provides:

A B __ knpi—k __ i _ ,A+B
e“e 75 EE (k)AB —E H(AnLB)—e .
1=0 k=0 =0

O

This proposition will become very useful once one will get the Jordan decomposition introduced in next
section. Given d € N and A € K, we denote:

Aol (0)
Jd(>\) = . . € My. (4.1)
. 1
(0) A

Example 4.4. Note that Jg(\) = Ay + J4(0) and for all k € [d — 1], J4(0)* is a matriz full of 0 with 1 on
the k™ upper diagonal and J;(0)? = 0 (J4(0) is a nilpotent matriz of degree d). One can express ¥t € R:

L1y o @
d—1 k
eJd(O) — Jd(o) _ 1 (42)
k! 21
k=0
(0) 1
1
Then, noting that Ay and Jq(0) commute, one can compute thanks to Proposition @
Ao e et
e ¢ 2 T @@=
oJa(N) — MapJa(0) oA (4.3)
2r
(0) et
e
21t means that AB = BA.
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Let us end this section with a simple corollary that helps us to compute the inverse of the exponential of
a matrix.

Corollary 4.5. Given A € M, (K), (eA)™! = e 4.

Proof. Tt is a simple consequence of Proposition @ since we know that A and —A commute, one can write:

I,=¢" = A=A = gdeA.

2 Nilpotent matrices and canonical decomposition

The Jordan decomposition, also called the Canonical decomposition (see Proposition ) is a matrix of the
form:

Ja, (M) (0)
, (4.4)
(0) Ja, (Ak)

where some _of the A1,..., Ay are possibly equal and the blocks Jg, (A1), .., J4, (As) are the Jordan block
defined in (@)

We will show_below that any matrix of M, (K) is similar in M,,(C) to a matrix that satisfies the Jordan
decomposition (Q) (we know from Lecture 3, Remark B.9, that this is not true in M, ,(R) because that
would mean that real matrices are all triangularizable in M,, ,(R)). Recall that Jg, (\;) is exactly the sum
of a diagonal matrix and a nilpotent matrix. A simple proof of the existence nilpotent character of Jg, (\;)
somehow relies on an important result of nilpotent matrices depicted below.

Theorem 4.6. Given a nilpotent matric N € M, (K) of degree d, considering xo € RY such that ho =
A1y £ 0, note that:

hE A gy £ 0,
and of course (AT)4"1hg # 0, and (AT)? = 0. Now, if we introduce:
F=Kzo+-- KA g, and G = (Kho + -+ K(AT)*ho) ",
we have the two properties:
e K'=Fa&d
e F and G are invariant through A.

Proof. Tt is easy to show that g, ..., A% 12y and ho, ..., (AT)d_lho are both linearly independent because
A and AT are both nilpotent of degree d. Let us assume that there exists d scalars ag, ..., ag_; such that:
apxo + - + ag_1 A% tzy = 0, then sequentially applying A4~!, A9=2 etc.. and A to this equation, we
progressively show that ag = 0, a; = 0...etc and gy, = 0, which proves that zg,..., A2 'z are linearly
independent. The same holds of course for hq, ..., (AT)¥ " hy. As a consequence, we know that dim F = k
and from Lecture 1, Subsection B.2, Item P} that dim GT =n — k.

Now, assuming that there exist x € F C {0}, y € G C {0} and two scalars «, 8 such that ax + Sy = 0,
we know that there exist k € [d] such that x = Z?:k N A1z and A, # 0 then we know that:

d
0= hlA*(ax + By) = ahd Z i (ATFF=1y = Nahl A4 g
i=k

(since y € (Khg A*%)* and A4 F+i=1z = 0 for all i > k 4 1), then the initial hypothesis ahff A4z # 0
allows us to conclude that \;a = 0 which implies @ = 0 by hypothesis on A;. Of course then, one also has
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B = 0 (since y # 0) and one has proven that G* and F are in direct sum. Then dim(F @ G*) = n and
F @ G+ = K" thanks to Lecture 1, Subsection @, Item 1.
One is left to show that F and G+ are A-invariant. Given z € G+, we know that for all i € [k]:

(Az)" (AT " hg = 2" (AT)'hg = 0
since z € (K(AT)%hg)* if i < k—1and (AT)*hy = 0. Thus Az € G*, and we see that G7 is A-invariant. [

Theorem 4.7. Given a matriv A € M,,(K) there exist two A-invariant subspaces Uy C K" and Uy C K™
with K™ = Uy @ Us, such that Aly, is bijective and Aly, is nilpotent.

Proof. If v € ker(A), then A%v = A(Av) = A(0) = 0. Thus, v € ker(A?) and therefore ker(A) C ker(A?).
Proceeding inductively, we see that

{0} C ker(A) C ker(A?) Cker(A3) C--- .

Since K" is finite dimensional, there exists a smallest number m € Ny with ker(A™) = ker(A™%7) for all

7 € N. For this number m let
Uy :=im(A™), Uy :=ker(A™).

(If A is bijective, then m = 0, Uy = K™ and Uy = {0}.) We now show that the spaces U; and U satisfy
the assertion.

First observe that U; and Uy are both A-invariant: If v € Uy, then v = A™w for some w € K", and
therefore Av = A(A™w) = A™Mw € Uy, If v € Uy, then A™v = A™(A™w) = A™(0) = 0, and therefore
Av € Us.

We have Uy +Us C K”. An application of the dimension formula for linear maps to A™ gives dim(K") =
dim(Uy) + dim(Us). If v € Uy NUy, then v = A™w for some w € K™ (since v € Uy) and hence

0= A"y =A"(A"w) = A*™w.

The first equation holds since v € Uy. By the definition of m we have ker(A?™), which implies A™w = 0,
and therefore v = A™w = 0. From U; N Uy = {0} we obtain K® = U; & Us.

Let us consider v € Uy such that Awvailable = 0. There exists a vector w € K" with v = A™w,
which implies 0 = Av = A(A™w) = A™Hw. By the definition of m we have ker(A™) = ker(A™*1), thus
w € ker(A™), and therefore v = A™w = 0. This implies that ker(A|y,) = {0}, ie., Aly, is injective and
thus also bijective.

Finally, since Us = ker(A™), for all v € Uy, A™v = 0 which exactly means that A in nilpotent on Us. O

One can now prove the existence and uniqueness of the Jordan decomposition for any triangularizable
matrix

Theorem 4.8. Any triangularizable matriz A € M,,(K) admits a Jordan decomposition. In_other words,
there exists an invertible matriz P € M, (K) such that P~YAP follows the decomposition (@) for some
k € [n], some scalars A1,. .., \; € K possibly equal and some dy,...,d; € N,.

Proof. We know from Lecture 3, Theorem that A admits at least one eigenvalue A\; € K. then setting
By = A — \I,, we know from Theorem that K™ = V), @ V_,, such that B is stable on V), and V_,,
and 5 V), is nilpotent and 5 V_,, is bijective.

1 1

Nos we apply Theorem @ to set the existence of two Bj-invariant subspace U. 1(’\1) C Vi, and Ui)f) CVy,

_ 77(A1) (A1) M) dim UI(M)
such that V\, = U;""" @ U} and of a vector zo € V), such that U}’ = Kaxg+KBi2g@---@KB, Zo.
(A1)
The decomposition of the matrix | , Ul(kl) in the base {zo, .. ., B(li1 2o} (where we noted dg’\l) = dim(Ul(Al)))
writes:

0 1 (0)

(4.5)
1
0 0,
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(A1)
and since A = By + A1 1, it is also stable on Ul)‘l) and its decomposition on the base {a:é’\l), ce Bill xé’\l)}

is exactly the block J o0 (A\1).

The matrix B; is also nilpotent on Uﬁ*;)), one can therefore reproduce the process until one gets a;
subspaces Ul(/\l), e U,gi\l) and vectors xéh) € Ul(’\l)7 . ,m,(l)l‘l) such that:

v =Kz o KBY Y 2 @ - @ Ko @ KBS 20,
The restrict of A in Vi, then writes with this basis decomposition:

T (A1) (0)

(0) : defll) (M)

Recalling that K" = V), @ V_,, and that A — A1, is bijective on V_j,, we know that A; is not an
eigenvalue of |AV_ A, therefore, one consider a new eigenvalue of |AV_ », and reproduce the same process
done above until one gets a complete Jordan decomposition of A:

J o0 (A1) (0)
(0)
(0) S0 (M)
<] = ) (4'6)
J o0 (Mg) (0)
(0) K
(0) J o0 (Ak)
ak

where A1, ..., A; are all distinct scalars. O

Lemma 4.9. Given A\ € K and d € N, the geometric multiplicity of J4(\) is exactly 1 and the algebraic
multiplicity of Ja(A\) (i.e. the exponent of (X — X;) as a factor of x.j,(n)) is equal to d.

Proof. The algebraic multiplicity is simply deduced from Lecture 1, Subsection @, Item H from which we
deduce that xj,n) =(X — A2, To deduce the geometric multiplicity, let us simply note from the form of
Ja(A) — Mg give in (1.5) that ker(Jg(A) — M) = Key (and Im(Jg(A) — Mg) =Key & --- @ Kep_1). O

As a simple consequence, one gets the following lemma (provided without proof):

Lemma 4.10. Let us consider the matriz J defined in (@), if we assume that all the A1, ..., A\ are distinct,
then for all i € [k], algebraic multiplicity and the geometric multiplicities associated to \; are respectively

equal to Y ", d and a;.

The following proposition justifies the uniqueness of the Jordan decomposition and explains why it is
often called the “canonical decomposition”.

Proposition 4.11. Given a triangularizable matriz A € M,,(K), there exists a unique Jordan decomposition
of A up to a permutation of the diagonal blocks.

Proof. Tt is a consequence of Lemma , the fact that the matrices Jy(\) are uniquely defined by A
and d and that similar matrices present equal eigenvalues with equal associated algebraic and geometric
multiplicities. O
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3 Resolution of linear differential equations

Proposition 4.12. Given a matriv A € M, (K):

8etA
= Ae',
o~ °F
Proof. Let us differentiate:
0t _ D (1 a B A
ot ot \'" 2! 3!
242
=A+tA*+ o + = Aett,
O
Example 4.13. Given d € N and t € R, note from (@) that:
2 d—1
N
etJd(O) — . . 2
° . ° . j
t
(0) 1
Therefore, one can check that:
d—2
0 1 ¢ =)
tJ4(0 : : : :
8@6:( ) _ . :Jd(o)ewd(o).
1
(0) 0

Theorem 4.14. The differential equatz’ona:

y=Ay
{y(O) =1y €R" o

admits as unique solution y : t — e*yq.

Example 4.15. Let us consider a mass m > 0 that is fastened to a spring, which possesses a spring constant
u > 0. Denote xg > 0 as the initial displacement of the mass from its position of equilibrium. We aim to
find the position z(t) of a weight at time t > 0, with the initial position x(0) = xo. Hooke’s law governs the
extension of the spring, leading to a second-order ordinary differential equation:

. d’x I

T T T
where £(0) = zo and £(0) = v, with vo > 0 representing the initial velocity of the mass. This second-
order differential align* can be recast as a first-order system by defining v as the velocity, which is the time
dertvative of x, i.e., v = &. Consequently, v = &, and we can represent the system as

. 0 1 T
y = Ay, where A:{ " , y:[}
—£ 0 v
m
3This formalism means that we look for a differentiable mapping y : R ++ R™ such that V¢ € R: ¢(t) = % =y (t) = Ay(t)

and y(0) = yo.
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Here, the initial condition transforms to y(0) = yo = [x0,vo]T. According to Theorem , the solution to
this homogeneous initial value problem is uniquely defined by y = exp(At)yo. We identify the eigenvalues
of A as a matriz of M3(C) to be two complex numbers A\y = ip and Ny = —ip, where p = /£ The

corresponding eigenvectors are
1 1
01:|:.:|E(C2, 1)2:|: .:|€(C2.
ip —ip

Thus introducing the change of basis matriz P = (v1,v3) € Mo(C)

etrt 0 1 1

explan =5 (% ] 57w 5= |1 Jean)

Example 4.16. The Jordan decomposition_helps us to solve the differential equation (@) for a general
A € M, (C) since we know from Theorem B that there exists P € M, ,(C) such that:

Ja, (A1) (0)
P'AP = -
(0) Ja, (An)

One can then compute thanks to Example B, Item @

et‘]’ll (A1) (O) etklet‘]dl (0) (O)
etA:P P—1:P P—l
(0) et‘]dn (An) (0) et/\"e‘]dn (0)

where et/ (0 etJan(0) hauve been provided in Example .
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Lecture 5

Largest eigenvalues and
Perron Frobenius Theorem

1 Motivation: Page rank algorithm

Let us depict below the general page ranking problem on the internet. Most internet pages are reached
through links accessed from other pages. Some pages have few such access links, some have a lot, the
ranking system should take into account the difference in popularity of the different pages to provide good

advice in search engine like Google.

o (j: the number of outgoing links of page j.

Let us then denote:
e L;: the set of pages that refer to page .

e v;: importance score of page 1.

The score should then satisfy the equation:

This leads to the matrix equation:

0 % % % V1 V1
1 0 0 ? V2| | V2
0 % 0 3 V3 o V3
0 0 & 0] |va vy

The Page Rank problem formalizes in a general setting of n pages:

Find v € R} st. Av=v (5.1)
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where the matrix A € M, (R;) contains in the column j the values % at the indexes ¢ such that page j
J
links to page i.

Questions:
1. Does Av = v admit a non-negative solution?
2. Is the solution unique?

3. How to solve Av=1v 7

2 Power method

The power method is a classical technique to find the eigen vector associated to the biggest eigen value of
a matrix that has one eigen value with strictly higher modulus. In practice, we compute a sequence y¥)
iteratively that should converge to the eigenvector associated to the highest eigenvalue. Given a vector
x € C", we note v(x) = x; where j € [n] is the smallest index such that |z;| = ||2||cc-

Algorithm 1 Compute the eigenvector and eigenvalue iteratively

Consider an initial guess =z,

error = 1
while error > tol do
y = Ax.

if v(y) =0 then
~ output (0,z).

else
— _ Yy
L error = Hx "(y)Hoo
- Y
=y

Output (v(y),x) as the eigenvalue-eigenvector pair.

If the output is (0,0), it means that the algorithm was badly initiated, but that never happens when
x is chosen uniformly in {R%, ||z[[ = 1}. Indeed the validity of the method is justified by the following
proposition.

Proposition 5.1. Let us consider a diagonalizable square matriz A € M, (R) that has n (possibly identical)
eigenvalues A1, ..., A, € C such that |M\1] > [A2| > |As| > -+ > |\,| > 0, and a basis B = (v1,...,v,) of
v-normalized corresponding eigenvectors (for all i € [n]: v(v;) =1 and Av; = \v;). We consider a vector
y©) = i Bivi € C™, such that By # 0 and a sequence (y")\ren satisfying:

Ay
k : (k1) — 2 2
VEeN: y Ay’ (5.2)

where ji, is the smallest index such that |(Ay");, | = [|Ay™ . The sequence (y™*))ren is well defined
(Ay*) £ 0) tends to vy and eﬁAy(k) tends to \1.

Be careful, when the dominant eigenvalue of A has an imaginary part different from 0 but A € M,,(R),
the associated eigenvector also has a non trivial imaginary part, and therefore, one should initialize the
power method algorithm with a random complex vector in order to ensure that 51 # 0.

This proposition relies on two small lemmas on the mapping v, the first one is quite obvious therefore,
we just prove the second one.

32



Matriz analysis - CSC6119

Lemma 5.2 (homogeneity of v). Given z € C" and o € C: v(azx) = av(x).

Lemma 5.3 (Continuity of v). Given a vector x € C™ and a sequence of vectors uy, such that limuy = 0,
we have the convergence limv(z + ug) = v(x).

Proof. For k big enough, say for k > K, the entries of uj are so small that the ordering of the entries of x

(in modulus) is the same as the ordering of the entries of x4+ uj. The smallest index j such that |z;| = ||z|/~
is also the smallest index such that |[z + ui];| = ||z + ug||oc, thus for k > K:
v(+up) = [z +w]; — [ol; = v(@).
O
Proof of Proposition @ Let us start with the identity:
Ay = A (Z Bivi> = BiAvi =Y Bidivi,
i=1 i=1 i=1
which then implies thanks to Lemma @:
(k—1) A Ay 2, (k—2) k, (0) n k
&) = Ay B Ay A%y AN i Bidi
- k—1)y — (k—2) B 2., (k—2)) - kq(0)) kq,(0
v(Ay=1) (Ay(x:yy(’”kiz)» v (A2y(=2) v(Aky(0)) v(Aky(0))
Let us then define:
ug = ; B <)\Z>k v — U
k = p | )\1 [ 1
and compute the limit:
- @-(Ai)’“ - ﬂi<Ai)’“
Up, = — =) v;,—v — =) v — 0, 5.3
[k | o ;51 A\ ! . ;51 A1 k—o0 (5:3)
k
since (i‘—l) k—> 0 for all 7 > 1. Let us compute the limit:
—o00
k n Bi s k
Hy(k) v H || AkF2©@ ; B BiM Zic1 By (/\T) Vi ; _ ||t 0
—v|l =\{—7aroos Vil = —v|| == U
o0 v(AFz(0) n g [ \F v(uy + v; k—oo
( ) S Bl)\llcy (Zi—l % (%) Ui) ( k ) 53
thanks to (E) and Lemma @ One can further add that:
lim v(y™®) = v(Avy) = \r(vy) = A,
k—o0
again thanks to the continuity of v given in Lemma @
O

The Page rank algorithm is used in practice to compute the solution v to the problem (@), however,
one still needs to prove the existence and uniqueness of such a solution. We will provide in the next two
sections some elements of theory concerning the matrix norms and the spectral radius that provide some
insights into the highest eigenvalue. In Section i, we will provide and prove the Perron Frobenius Theorem
at the basis of our existence and uniqueness result. In the last section we will explain and justify how is
conducted the Page Rank algorithm.
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3 Equivalent norms and matrix norms

Recall the definition of a norm on a vectorial space (like M, ,,).

Definition 5.1 (Norm). o Given a vector space E, a norm || - || is a mapping from E to Ry that should
satisfy:

1. Non-negativity: Vu € E: |jul| > 0.

2. Positive definiteness: Yu € E: ||u|| = 0 if and only if u =0 (the zero vector).
3. Scalar Multiplication: Yu € E, a € K: |lau| = |a|||ull.

4. Triangle Inequality: Yu,v € E: ||u+v| < |Ju| + ||v].

o Two norms |||, ||-|I' defined on E are said to be equivalent iif there exists two constants C,c > 0 such
that:

VeeE: dlz| < [lz]” < Ol

On finite dimension space (like M, ), the choice of the norm is not very important thanks to next
important result.

Proposition 5.4. In finite dimension vector space all norms are equivalent.

This is a famous result in topologym, therefore, not to go beyond the scope of this course, we just provide
partial elements of this proof.

Element of proof. We just show that given a vector space F and a basis (uq,...,u,) (if dimE = n), all
norms are continuous under the norm || - ||; defined as:
n n
Vas:inuiGE: ||:17||1:Z|:E,|
i=1 i=1

Indeed, thanks to the triangular inequality, one can bound for the same vector z and for a norm || - |:

n n
lzll = 1D @i || <Y Jail llusll < Cllelh, with: €' = max [[u].
i=1 i=1 i€n]
The norm || - ||; can then be used as a pivot to show that all norms are equivalent. O

This proposition allows us to define the limit in M, , without introducing a particular norm.

Definition 5.2 (Limit of matrices). Given a sequence of matrices (Am)men € Mp.r, and a matric A € M p,
we say that lim A, = A iif. one of the following properties is satisfied:
m—r oo

1. Given a norm |- || on My ,:

Ve>0,IN €N, st. Vn>N: |A,—A| <e.

2. For any norm | - || on Mp,:

Ve>0,IN €N, st. Vn>N: |A,—A| <e.

Definition 5.3 (Matrix norm). A matriz norm || - || on My ,(C) is a norm that satisfies for any A,B €
Mp,n(C):
IAB| < [[A[llIBI|-

1See for instance Chapter III, Proposition 7.2. in Choquet, Gustave., and Amiel. Feinstein. Topology. New York: Academic
Press, 1966. Print.
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Example 5.5. For any M € M,,, p € [1, 0], we note:
[ M|,

]l

I, = sup{ zeC\ {0}} |

where we recall thatVp > 1, ||z, = (>0, |xl|p)% and ||7||oc = max;cpy) 2], in particular, for any M € M,,:

n n
M]||; = max M; ; and M|, = max M; ;|
I, = s S 0 1911 = s~ e
For all p € [1,00], |||l is @ matriz norm since for any A, B € My, one can bound:

IABIl, = sup [[ABz|, < sup [[All, |[Bzll, < sup [[A[l, I Bll, =], < [IAll, [1BIl, -

lzllp<1 llll,<1 lzllp<1

Lemma 5.6. Given a matriz norm || - || on My, for any invertible matriz P € M,,, the norm || -||" defined
for any M € M,, as ||M||' = |P~*MP|| is also a matriz norm.

Proof. Tt is not hard to verify that || - ||’ is a norm, then for any A, B € M,,:
|AB|" = |P~*ABP|| = |P~*APP™'BP| < |P~*AP|||P~'BP| = || A|'| B"

4 Spectral radius

Definition 5.4. The spectral radius p(A) of a matriz A € My, ,,(C) is defined as:
p(A) = sup{|Al, A € Sp(A)}.

When A € M, ,,(R) C M, ,(C), one still needs to look at the spectrum in C to compute the spectral
radius p(A) because the spectrum in R could be empty.
Be careful that the spectral radius is not a norm (p(A) =0 % A = 0, see the lemma below)

Lemma 5.7. For any nilpotent matrizx A € M,,,(C), p(A) = 0.

Proof. Given z # 0 and A € C such that Az = Az, we know that Vk € N, A¥z = A*z. In particular, since
A" =0: A"z = A"z = 0 which implies A = 0. Therefore Sp(A4) = {0} and p(A) = 0. O

Let us give some elementary properties on the spectral radius.
Lemma 5.8. Given a matric A € M, (C), an integer k € N and a scalar o € C:
p(A)* = p(A") and p(ad) = |alp(A)
It is a simple consequence of the following lemma.
Lemma 5.9. Given a matric A € M, (C), an integer k € N and a scalar o € C:
Sp(AF) = {)\k, A€ Sp(A)} and Sp(aA) = {aX, X € Sp(A)}

Proof. We know from the Schur Theorem that there exist an invertible matrix P € M,,(C) and an upper
triangular matrix 7" such that:

Al (%)
P lAP=T= )
(0) An
where A\q,..., A, € C are n (possibly identical) eigenvalues of A. Note then that Sp(A) = {A\1,..., Ay} =

Sp(T) and it is immediate to see that Sp(aA) = Sp(aT) = {a)\,...,a\,} and Sp(A¥) = Sp(T*)
(AR 0
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Let us now give a first connection between the spectral radius and matrix norms.
Lemma 5.10. Given a matrizc A € M, ,(C), p(A) < ||A| for any matriz norm || - ||.

Proof. There exists A € Sp(A) such that p(A) = |A|, then Av = \v for some v € C™ \ {0}. One can then
bound (recall that e; € R™ is the vector full of zero with a 1 at the first index):

p(A)l|ve || = [M[lve | = [Avel || = [|Ave] || < [|A[[|ve] |,
which directly implies our result since ve? # 0. O
Lemma 5.11. Given A € M,,(C) and e > 0, there exists a matriz norm || - || such that:
p(A) < A" < p(A) +¢
Together with Lemma , this lemma implies:

Corollary 5.12. VA € M,,(C): p(A) = inf|.||, matriz norm [|Al|-

Proof of Lemma . Applying the Schur triangularization to A we know that there exist U unitary and 7'
upper triangular such that:

)\1 T1’2 . Tl,n
A=UTU*, with: 7= |9 2 Tos
0 0 Am
For all m € N, define a norm | - ||, followingly:
— —17r* . 1 1
VB e M,(C): |Bl|m= |HDm U BUDmm1 where: D, = Diag(—,...,—)
m m”

where |[||-[[; is the matrix norm defined in Example @ (for all M € M, (C) [IM]ll; = supjepn >oiey | Mij

).

We know Lemma p.§ that for any m € N, || - ||, is a norm and:
A1 Tmm—l . Tl,nm_"“‘l
1 Ao TQ,an_n"'2
41 = |50, = s B

0 0 A X

T T n Tn— n
:maX(|)\1|,|)\2|+|1’2|’.._7)\nl_l’_|11’n+...+Ll)

m m m

< p(A) + Iz, p(A).

m m—oo

Therefore, there exist m big enough such that:

p(A) < [[Allm < p(A) +e.

Lemma 5.13. Given a matric A € M,,:

lim A =0 < p(4) <1

k—o0

(the limit of sequence of matrices has been defined in Definition @)
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Proof. Consider x € C™ such that Az = Az with p(A) = |A|. One has:

p(A) | = Nl = [\¥al| = | A% — o,

thus p(A) < 1.
Let us now assume p(A) < 1 and set ¢ = PPT(A). By Lemma , there exists a matrix norm such that
[IA]l" < p(A) + & < 1, then:

IARI” < (141N < (p(A) +2)* — 0,

k—o0
since all the norms are equivalent in M,,, that means that A* k—) 0. O
— 00
Theorem 5.14. For any matriz norm || - ||, we have

p(A) = Jlim |l A%]*
k—o0
Proof. On the first hand Lemmas @ and allow us to bound:
plA) = p(AM)E <|A%|%,

and in particular p(A) < liminfy o || A% . .
Given € > 0, let us introduce A = ﬁ, then p(A) < 1 and by Lemma 7 there exists N such that
for all k£ > N:

A5 < 1AM (p(A) +€)" < (p(4) + o)*.
This inequality being true for any € > 0, one finally obtains the inequality:

VieN: lim sup ||[A¥||* < p(A) <lim inf ||A¥|%.
k— o0 k—o0
In other words, limy_o [|A¥||* = p(A). O

5 Positive matrices

We say that a matrix A € M,,(R) is entry-positive if all its entries are positive (i.e. if Vi, j € [n], 4; ; > 0). Be
careful we will define later in this course the notion of symmetric positive matrices (resp. hermitian positive
matrices) which designates symmetric matrices (resp. hermitian matricesd) A € M, (R) (resp. A € M,,(C))
such that Vo € R™ (resp. Vo € C"), 7 Az > 0 (resp. 2*Ax > 0). Given two matrices A, B € M, (R) we
further note A > B if Vi, j € [n], A; ; > B, ; and |A| = (|4; ;)i jen € M, (RL).

Lemma 5.15. Let A, B € M,,(C) such that A < B entry-wise and B > 0. Then p(A) < p(|4]) < p(B).

Proof. Since A < |A| < B, we have A*¥ < |A|F < B*. This implies ||A*||r < |||A|*||lr < |B*||r. By
Theorem b.14, p(A) < p(|A) < p(B). 0

Given a matrix A € M,,, we call a submatriz of A any matrix A € M,, such that there exist two index
sets I,.J C [n] satisfying:

L Ai,j lf’LEIaHdJEJ
“ 0o otherwise.

Then the following corollary is a simple consequence of Lemma applied with B = A< A.

2Recall that it means that A* = A.
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Corollary 5.16. Given an entry-positive matric A € M, (Ry) and A € M, (Ry), a submatriz of A, we

have p(A) < p(A).

Lemma 5.17. Given an entry-positive matric A € M, (Ry), if the row sums of A are equal, thenl p(A) =
|Alloo- If the column sums of A are equal, then p(A) = ||A|l;.

Proof. If all the rows of A sum to ||Al|oo, then Al = ||Al|.cL and ||Alloc < p(A) but we know that || - ||« is a
matrix norm, therefore ||A]lc > p(A) thanks to Lemma@ and finally p(A) = ||A||ec. If the columns are
equal, we obtain the same result considering A7 since AT having same eigenvalues as A, p(A4) = p(AT) =
[|A]l1 (note that then the eigenvector associated to p(A) is not 1).

Lemma 5.18. Given an entry-positive matriz A € M, (Ry):

min 3" Ay < p(A) < Al = max 3 A;
J J

Proof. Denote @ = min; Zj Ajj. If @ =0, then it is true. Suppose o > 0 and construct a matrix B € M,,
such that:

«
Biﬁ. = niAiy.
Zj:l Ai’j
where A;. (resp. B;,.) is the i-th row of A (resp. of B). By Lemma 7 a = p(B) < p(A). O
Theorem 5.19. Given an entry-positive matriz A € My(Ry), for any x € R, (with positive entries), we
have:
min ! iA z; < p(A) < ma ! iA x
= ki < < max — i
i€ln] Ti = G =P ich] Ti e

Proof. Denoting S = diag(z) = diag(x1,x2, ..., %, ) one can conclude with Lemma applied to S~1AS
since p(STLAS) = p(A),. O

Corollary 5.20. Given an entry-positive matriv A € M,(R;), x € R} and o, f > 0 one has the implica-

tions:

ar < Axr < fzr = a<p(4)<p,
ar < Ar < fr = a<p(A)<p.
Proof. Given i € [n], one has:

%

1 n
Vi € [TL] : ;ZAi,jxj = <B,
i =

in particular, Theorem allows us to set that p(A) < S and one can show similarly that o < p(A). The
implication between strict inequalities, is shown the same way. O

Corollary 5.21. Given an entry-positive matriz A € M, (Ry), the eigenvectors with positive entries are
associated to the eigenvalue p(A).

Proof. Considering x € R’} such that Az = Az, one knows that A € R, Corollary (and inequality
Az < Az < Azx) then allow us to conclude that A < p < A, in other words, p(A4) = A. O

3Recall that ||-||co in the case of a entry-positive matrix is the max of the rows: ||A| o = max;e[n] »_; = 1" Ai;
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6 Perron Frobenus Theorem

The next three theorems are all results of the so-called Perron-Frobenius Theorem.

Theorem 5.22. Given a matriz A € M,,(Ry) such that A > 0 and a vector x € R™\ {0} such that Az = Az
for some |A| = p(A), we have the identity:

Alz| = p(A)|x] and |z| >0
Note that this theorem implies:
1. p(A) is an eigenvalue of A,
2. p(4) >0,
3. there is a positive eigenvector associated with p(A).
Proof of Theorem . Given Az = Mz with |\ < p(A), we have A|z| > |Az| = |Az| = p(4)|z|. If
Alz| > p(A)|x@en Corollary would imply p(A) < p(A), which is impossible since p(A) > max; A;; > 0

by Corollary . Therefore, Alz| = p(A)|z| and Vi € [n]: |z|; = ﬁ Z?Zl A; jlz|; > 0 since |z| # 0 and
A>0. O

Lemma 5.23. Given a matric A € M, (R;) such that A > 0, A € C and x € C" \ {0} such that Az = Az
with |\| = p(A), then for some 6 € R, ez = |z| > 0.

Proof. The triangular inequality of the modulus provides:
Vien]: |Az| =Y Ay <) Aylr,] = (Alz]); (5.4)
j=1 j=1
Besides:
|Az| = |[Alz] = p(A)|z| = Alx],

where the last equality is a consequence of Theorem . Therefore the triangular inequality in (@) is
reached, which implies that there exists 6 € R such that for all i € [n], z; = e%|z;]. O

Theorem 5.24. Given a matriz A € M, (Ry) such that A > 0, {\ € Sp(A), |\ = p(A)} = {p(A)}.

Proof. Suppose we have a A such that |A| = p(A4) and Az = Az for some z € C" \ {0}. By Lemma ,
there exists w = ez > 0. Then:

Aw = e Az = Aez) = \w,
and by Corollary , A=p(A). O
Theorem 5.25. Given a matriz A € M,,(Ry) such that A > 0, dim(Ker(A — p(A)L,) = 1.

Proof. Suppose we have Aw = p(A)w, Az = p(A)z and w # 0, z # 0. By Lemma , there exist 6,0 € R
such that, if one notes w = e%w and ¢ = ez

Aw = p(A)w AC = p(A)C and w,( > 0.
Let us then denote a = min;ef, ¢ and set 2 = w — aC. Then Az = Aw — 0 A¢ = p(A)z, which implies
x = 0 because if x # 0, then Theorem M would imply = > 0 which is impossible since z; = 0. Therefore,
w = a, which means z and p are aligned (in C™), and dim(Ker(A4 — p(A)I,,) = 1. O
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7 Application to Page Rank algorithm

In the context of the PageRank algorithm, the original matrix A € M,,(RT) is column-stochastic (i.e. all
the columns sum to 1) but may not be strictly positive due to zero entries. To address this and create a
problem with a unique solution, consider the following approach:

Define S = %]l]lT € M, (RT), it is clear that S is positive and column-stochastic. Given « € (0,1), we
introduce the matrix:

Ale) = (1 —a)A+ab.

We know from Lemma that p(A) = 1 and Theorem implies the existence of a unique positive
eigenvector @ such that ||ul|; = 1 and corresponding to the eigenvalue p(A) = 1. The relationship is described
as:

i = A()a = (1—-a)Ai+aSt = (1—a)Ai+ ~17.
n
Considering a vast set of documents, such as the internet, the fraction & becomes negligible. Hence, the

vector 4 approximates an eigenvector u of the original matrix A with Au ~ u. Solving for @ in jl(oz)d =1
serves as a a&ractical solution to finding u, and this problem can be solved with the power method presented
in Section P.
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Lecture 6

Symmetric / Hermitian matrices and
their eigenvalues

1 General properties and definitions

Definition 6.1. A matriz A € M, (R) is said to be symmetric iif. AT = A. A matrivr H € M,,(C) is said
to be Hermitian iif. H* = H. We will note H,, the set of Hermitian matrices of M, (C).

Note that if A € M, (R) is hermitian, then it is symmetric, therefore, some of the coming properties
expressed only for Hermitian matrices are also valid for such symmetric matrices A.

Proposition 6.1. The eigenvalues of a Hermitian matriz are real values.
Proof. Considering A € H,,, if there exist v € C", A\ € C such that Av = Av, then:
v =v"Av = v A% v = Ao
which implies A = A\* since v # 0, hence A is real valued. [

Proposition 6.2. Given A1, Ao, 2 eigenvalues of a hermitian matrix A € H,,, if A1 # Ao the eigenspaces
Ey, =ker(A— \1I,), Ex, =ker(A — \o1,,) are orthogonal.

Proof. Given v; € Ey, and v2 € E),, one has the identities:

v} Avg = Agvivg and ] Avg = (A%v1) ve = (Avy) vy = AJvive = A1vive
One then obtains the equality (A — A3)vjve = 0 which directly implies vjve = 0 since A\; # Aq. O
Theorem 6.3. Any Hermitian matriz is diagonalizable with unitary matrices.

Proof. By Schur Triangulation, there exist U € M, (C) unitary (U* = U~!) and T € M,,(C) such that
A =U*TU. One then has the identity:

T =UA"U*=UAU" =T,
which implies T diagonal since T' is upper triangular and T* is lower triangular. O
Definition 6.2. A matriz A € H" is positive semi-definite (PSD) iif
VeeC': x"Ax>0.
1t is positive definite (PD) if:
Ve e C*"\{0}: z"Az>0.

We denote A =0 or A > 0 for A € H,, respectively PSD and PD.
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o (Covariance Matriz): Given a random vectorY € C™ such that E[Y] = 0 we denote

Example 6.4.
Ry its covariance, it is defined as:
Ry =E[YY”]

The covariance is PSD as for any x € C": z*Ryx = 2*E[YY*]z = E[2*YY*z] = E[|[Y*2|?] > 0.

(Hessian Matriz) Given a function f : R™ — R, we denote the gradient vector:

of(z)
Oxq
Vf(x) = e R,

f (x)

Ox .y,
and the Hessian matrix:
82
/) € My (R)

]m‘e{n]

A well known theorem sets that V2 f(x) is symmetric if f is twice differentiable and continuous (we say
that f is of class C?). More over V2 f(x) is PSD iif. f is a convex function. For instance, considering

frax— 2*Ax 4+ 2072 + ¢ (fis a quadratic function), one can compute:

and V2f(x) = 2A.

Vi(z)=2Az+2b

If A is PSD, f(x) is convez.
(Ellipsoid) Consider the ellipsoid, which is the set of points x = (z1,x2) € R? such that:

x 2 x 2
(&) (&) =
aq ao

where a1 and as denote the shape of the ellipsoid. This can be written in matrix form as

1
= 0
1'T<a§ 1>JUS1
a?
2

In dimension n, given any P € M,,(R™) PD, the set £ = {x € R" | 2T Pz < 1} defines an ellipsoid.
With the eigenvalue decomposition of P: P =VAVT with V orthogonal and A diagonal, we have

2T Pr =2t VAVTz = 2T Az,

where z =V x is a rotation of x.

Proposition 6.5. If A is PSD, then any principal :subnwtm'zE is PSD.

As a consequence any square diagonal block of a PSD matrix is PSD (in particular the diagonal entries

are positive).
.,n}, for any z € C*, we introduce # € C" such that VI € [k],

Proof. Given I = {iy,ia,...,ik} C {1,2,..
.y}, £; = 0. One can then express:

CEil = Iy, and Vi ¢ {il,..
o*Arx = 2% Ax > 0.
O

ik} C

LA principal supmatrix of A € M, (C), is any matrix written A7 = (A4; ;)i jer € M(C), where I = {i1, 12,

{1,2,...,n}.
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2 Root of Hermitian matrices
Problem 6.6. Given p € R™ and X € 8", PD, we denote X ~ N(u,X) if the random vector X € R™
follows a multivariate Gaussian distribution with probability density function given by:
o(x) o (5w )
)= ———""—Fe€xp|—=(z— T —

@2n) % det(x)s P\ 2" :

note then that u = E[z] and ¥ = E[(z — p)(z — p)T].
One can show easily that X — u ~ N(0,X) and has a density:
1 I 11 >
)= ———"—"—TFe€xp|—-x X x|.
U = o T den(m)t 7P ( 2

Question: Does there ezist S € M, (C) such that S(X — p) ~N(0,1,,) ¢
Thanks to Theorem settled below, we can consider S = E’%, one can then note that for any bounded
mapping f : R™ — R:

L[ SEmm) (e N
[ 15— yotae = [ TSN vy (S5 ) d

()

y=>5Sx+up
dy = det(S)dz = det(X)” 2 dx.

thanks to the change of variable:

We see that the density of S(X — ) is the same as the density of a Gaussian random vector with zero mean
and identity covariance matriz.

Theorem @ setting the existence and uniqueness of S in the previous problem requires the following
property in order to set the uniqueness.

Proposition 6.7. Given two Hermitian matrices A, B € H,,, if AB = BA, then there exist a unitary matriz
U e M, (C) such that U*AU and U*BU are both diagonal. One says that A and B are co-diagonalizable.

Proof. Let us consider Ay,..., A, k distinct eigenvalues of B such that Sp(B) = {A1,..., Ax}, we further

denote for all i € [k], E; = ker(A—\;I,,), the eigenspace associated to \;, and v%i), e v((;i) an orthogonal basis

of the eigenspace E;, where of course d; = dim(FE;). Noting V = (vgl), ... ,vfill), ... ,vik), . ,vé?) e M, (C),
we know that V is unitary and diagonalizes B:

At

V*BV =
Ak

Ak

Given ¢ € [k] and any v € E;, the commutation hypothesis allows us to set BAv = ABv = \;Av. We see
that Av € F;, thus, there exist £ matrices Ay, ..., Ax such that:

Ay (0)
VAV = ,
(0) Ay
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and since (V*AV)* = V*A*V, we know Aj,..., A are all hermitian. Therefore for all i € [k], there
exists a unitary matrix U; € M,, such that UA;U;, = D; where D, is diagonal. Let us then introduce the
unitary matrix:

U, (0) Uy (0)
U= , note that: U* = .
(0) Uy (0) U;

Then we have naturally the identities:

D, (0)
U*V*AVU = '
(0) Dy,
Uy (Mla,)Un (0) Mg, (0)
U*V*BVU = _ 7
(0) Ui (Mela,, )Ug (0) Arda,
this is exactly what we wanted to prove since VU is unitary (VU)*VU = U*V*VU = I,,). O

Theorem 6.8. Given an hermitian matriz A € H,, PSD, and k € N, there ezists a unique matriz B € H,,
1
such that B¥ = A. We denote B = A% .

Proof. The existence is straight forward. We know that there exits U € M,,(C) such that U*AU = A with
A = Diag(A1,...,A,) and Aq,..., A, > 0. One can then introduce B = UDiag()\I%7 R /\T%L‘)U* = UARU*. Tt
satisfies B¥ = (UA*U*)* = UAU*.

To show the uniqueness, let us assume there exists a second matrix C' € M,, such that C* = A. Assuming

that Sp(A) = {p1,..., (= {1, ..., A\n}) with pg, ..., all different from one another, let us introduce
the polynomial:

Note that for all ¢ € [I] P(w;) = ,ul%. With this choice:

P(\) (0) A (0)
P(A)=UPAU* =U Ur=uU U*=B
(0) P(\) 0 N

Now, since C* = A we see that B = P(A) = P(C*) commutes with C as a polynomial of C. Therefore, by
Proposition @, there exists V' € M,,(C), unitary, such that:

V*BV =T and V*CV =T¢
with I'g,I'c € M, (R4), both diagonal. Now:
Iy = V*B*V = V*AV = V*C*V =T,

thus, by uniqueness of the £*" root in R, we deduce that I'c = I'g and, as a consequence B = C, the k!
root of A is unique. O
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3 Order relation and minmax formulas for eigenvalues
Let us introduce in the set of hermitian matrices the following order relation:
A>B = A-B>0
We present below a set of important properties to deal with these inequalities.
Lemma 6.9. We consider A, B,C € H,,, a € C and we note A\1(A), ..., \,(A) the eigenvalues of A:
1. If A= 0,a >0 then aA = 0.
2. IfA=0,B>0then A+ B = 0.
3. If A= B,B > C then A»C.

4. Given any invertible matriﬁ PeM,,: PAP>B = A*> P~*BP~! gnd P*AP -~ B = A~
P~*BP~!.

5 AB>0 < 0< A1 <B L
6. If A= 1I,, then \;(A)>1 Vi=1,...,m.

Proof. 4. If P*AP = B, for all y € C", y*(P*AP — B)y > 0 and in particular, for any = € C", replacing
y with P~ 'z, one obtains:

0< (P '2)*(P*AP - B)P 'z =2+ (A— P *BP ')z
The second inequality is just proven with strict inequalities replacing large inequalities.

5. Let us first treat the case B = I,,. Let us decompose thanks to Theorem @: A= A2 Az with A2
invertible. One can then deduce from Item | (and the fact that A* = A is invertible):

A-1T, = AL, A% = I, = I, = A 2[,A"= — I, = A1
In the general case, if we assume A = B, then Theorem @, Item H and the upper result imply:

A-B=A%(I,-APBAT5)AT =0 <« I, = AT2BA"®

e  ATB AT -], < B l»=A"l

6. Let us decompose A = V*AV with V unitary and A diagonal. We have A = V~*[,,V* > [, thanks to
Item H thus A\;(A) — 1> 0 Vi € [n].
O

Looking at the last result, one is tempted to ask what would happen if one replaces I,, with a matrix
B € H™. Denoting A (B) < ... < \,(B) the ordered list of the eigenvalues of B, do we have

The answer is yes but one will need supplementary results to provide a proof.

Theorem 6.10 (Rayleigh-Ritz). Given A € H,, then

x*Ax

Amax(A4) = max — st |lzlle =1
. x*Az

Amin(4) = min —— st flzlla =1

2Recall that P~* = (P*)*.
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Proof. Let us decompose A = VAV* where V = [vq,...,v,] is unitary and A = diag(A1,...,\,) with
A < --- < \,. First we know that:

vk Avy, vy Ay

= An — /\max(A) and = )\1 - Amin(/l)-

vEvn, viv1
We now want to show that v, and v; respectively maximize and minimize the functional = +— %. It is
merely sufficient to bound:
n
2 Ax =" VAV z = E Ni|vrz|?

i=1

< Amax(4) Z 0 2* = Amax (D)2 VV*2 = Aax(4) |23,
i=1

and one can check similarly that Vo € C", A\yin(4)||7]|3 < 2* Az. O
Given a matrix A € H,,, we will note in what follows:
A(A), ..., A (A4), with A (A4) < -+ < A (A),
the ordered list of eigenvalues of A.

Theorem 6.11 (Courant—Fischer). Let A € M,, be Hermitian and k € [n]:

. z*Ax
AL, = min max (6.1)
dim S=kz€S* T*x
and ”
. x*Ax
Ak = max min . (6.2)
dim S=n—k+1z€S* xr*x

Proof. Let z1,...,x, € C" be orthonormal and such that Az; = A\;x; for each i = 1,...,n. Let S be any
k-dimensional subspace of C™ and let S" = span{xy,...,z,}. Then

dimS+dimS =k+(n—-k+1)=n+1
therefore {x : 0 # x € SN S’} is nonempty. One can then bound:

z* Ax x*Ax . z* Ax . z* Ax . Tt Ax
sup ” > sup — > inf " > in —— = min = Ak
lz||=1 T°T |z]=1 ZT°T zl|l=1 x*x lzl=1 x*x lz=1 x*T
z€S z€SNS’ zeSNS’ zes’ zeS’

which implies that

z*Ax

inf su > Ak
dim S=k .||z || =1 r*x
zeS
However, span{xy,..., 2} contains the eigenvector x, span{zi,...,xzx} is one of the choices for the

" Ax

subspace S, and ¥ = A, when z = =y, so the inequality above is actually an equality in which the
infimum and supremum are reached:
¥ Ax
inf  sup = A\
dim S=k lz||=1 r*x
zeS

The second identity follows from applying the first result to —A:

) x*(—A)x ) x*Ax . T*Ax

_)\k = min max ———— = min max { — = — max min
dim S=n—k+1 ||z|=1 *T dim S=n—k+1 T*r dim S=n—k+1 |z||=1 z*T

¢S z¢S
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Theorem 6.12 (Weyl). Let A, B € H":

Proof. Using the fact that z* Az + 2*Bx = 2*(A + B)x and that for any € C™\ {0}:

*B
M(B) < T2 < \.(B),
]l
one has the inequality:
¥ Ax x*Axr  z*Bzx ¥ Az
T A(B) < < () + )
]| > l=]? ]|

Composing on the left by mingiy,s)—x maXz§S7 one obtains thanks to Theorem :
x#0

Ae(A) + A1(B) < A(A+ B) > A(A) + A (B)

Corollary 6.13. Given two Hermitian matrices A, B € H,:

AzB = Vie|[n]: A(A) = Ai(B),
where A\ (A) < - < A\, (A) (resp. M\ (B) < -+ < A\, (B)) are the ordered list of eigenvalues of A (resp. B).
Proof. If A »= B, then A — B = 0 and we have \;(A— B) >0 for ¢ =1,...,n and therefore:

Ai(A) = A\i(A+ B — B) > A\(B) + M (A — B) > \i(B)

We will use a lot the following identity valid for a given A € H,, and i € [n]:
Ai(A) = —An—ip1(—A4). (6.3)
Proposition 6.14. Let A, B € H,,, we have the following properties:
1. (Interlacing) Given any z € C", k€ {2,...,n}:
Ai—1(A) < A (A £ 22%) < Ny1(A)
2. If rank(B) <r , ke {r+1,...,n—r} we have:
Me—r(A) < X (A+ B) < Ay (A)
3. For any index set I = {i1,...,ir} C{1,2,...,n},
Mo (n—r)(A) < Ae(Ar) < Apyn—r(A)
4. For any semi-unitary matrid U € M, (C),
Me—nir(A) S M (UTAU) < X (A)

5. Given j, k € [n]:
Aj+k-n(A+ B) < Xj(A) + Ae(B) < Ajri—1(A+ B)

3 A matrix with orthonormal columns (but possibly r # n so it is not a square matrix).
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Proof. 1. We know from Theorem that:

AM(A+£22")= min max v(ALz)e > min  max At zzt)e
dim S=k z€$ [l||? dim S=k zeSn{z}+ [l]|?
Now for all subspace S ¢ C", dim S = k, there exists a subset S** C S such that dim S+* = k — 1
and S*% L z. Then:
*A *A *A
A(A+22") > min  max ki i T T

_— m max —— > min max ——
dim S=k zeStz ||£U||2 w (ss)lsktg/s;sl-z reS’ Hx||2 dim S=k—1 z€S H$||2
im =k,S'=

2. If Rk(B) < r, given the eigenvalue decomposition B = >_'_; \;(B)u,u;, then:

T r—1
i=1 i=1
3. Recall that Ar = (4; ;)i jer € M;(C). We already know from Proposition @ that A

Let us introduce the mapping ¢; : C" + Ckn such that for all x € C", Vk € [r], ¢1(x);, = z; and
for all i € [n] \ I, ¢r(z); = 0. One can then express thanks to Courant Fischer Theorem that for any

ke lr]:
*A *A
M:(Ar) = min  max %: min  max M
ancsip weSer flal® o BeT, sesaro lér (@)
x*Ax ) x* Az

= min max T2
s’ccn,3sec”:  x€S’,x#0 ||.TC||
dim S=k,S'=¢(S)

= )‘k+nfr(A)

min max T =
LS wedi(S)a0 [

. z* Ax
< min max ——
s’ccn, z€S’ ,x#£0 ||.Z‘H2

dim S=k+n—r

To prove the other equality let us note that for [ =n —k+ 1 and A = —A’, one has (multiplying the
two sides of the inequality by (—1)):

_A2n—l—7'+1(_A) < _)\n—l-i-l(AI);
which provides, thanks to (@)
)\l—i-r—n(A) < )\l(AI)

4. Let us complete the orthonormal family induced by the r columns of U = (uy, ..., u,) with n—k vectors
(v1,. ., Up—). W= (u1,...,ur,v1,...,0p_,) unitary. Introducing the matrix V"= (v1,...,v,—_x), one
knows that the block matrix (U v ) is unitary and one can bound thanks to Item J:

)‘k+n7r(A) = )‘k+nfr(W*AW) = )‘kJrnfT(( U V)*A( vv )) = )‘kJrnfT((gzﬁg g:ﬁ\‘; )) > Ak(U*AU)v
thanks to Item E The other inequality is proven the same way thanks to Item E

5. Given A, B > 0, we have the eigenvalue decomposition

A= Ni(A)u;(A)u;(A) and B =Y X(B)u;(B)ui(B)*.
i=1 =1
Defining A; as
A=Y N(Aui(Ayui(A)* and By = Y N(B)u(B)ui(B)*
i=j+1 i=k+1
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we can show that
Aj(A) = A (A= 4A)) and Ae(B) = A(B — By).
Now, since Rk(A; — By) < 2n — j — k we know from Item E:
Aj(A) + A(B) = A (A—A4)) + (B —By) > \(A—A; + B— By)
=A\(A+B—(Aj — By)) > Njrk—n(A+ B).
One can deduce from the first result the sequence of implications and (@)
—Ajth-n(A+ B) = =Xj(A) = \(B) = Aon—jis1(—A—B) 2 A_j1(—A4) + Anp41(—B)
which implies that for all A, B € H,, and any j, k € [n]:

Njpk—1(A+ B) > Xj(A) + M\(B)

O
4 Applications
4.1 Principal component analysis (PCA)
Consider an p x n data matrix X = (21,...,2,) € My . Each of the n columns represents a different

repetition of the experiment, and each of the p rows could be a particular kind of feature. PCA transforms
the data into a new coordinate system through a linear transformation.

The transformation is defined by a family of | orthonormal weight vectors (wy, ..., w;), and maps each
column vector z; of X to a new vector of principal component scores ¢; € R!, where [ is generally less than
p to reduce dimensionality. These scores are given for all ¢ € [n] by:

ti =Wha; with: W = (wy,...,w;) € M, (R).
this way, one would go from a matrix X of size p X n to a matrix T = (¢1,...,t,) of size k x n. The
score vectors ty,...,t, are seen as n drawings of the same law. One then construct each of the w; with the

objective to maximize the empirical variance of each of the entries of the score vector ¢;. This condition
rewrites for the first weight vector:

n

n
1 . 1
wp = argmax — g (wlz; — wT'z)? with: 7= — E Z;.
werP 1~ n <
lwi=1 =1 =1

with the assumption = 0 this identity rewrites:

n
1 1
Wy = argmax — E waia:sz = argmax —w’ XX w.

werP T —1 werP T
flwll=1 = [lwll=1

One recognizes here the Rayleigh quotient of the “sample covariance” %X X7 and can deduce that w; € R?
is the eigenvector associated to the biggest eigenvalue of %X XT e M,,.

Subsequent components are found by subtracting the contribution of the previous components and finding
the weight vector that extracts maximum variance from this new data matrix:

TRTY R Rt
VEe[l]: W= argl‘mlz‘ix {W} where: X=X — ZwszX
wl=1 wlw
s=1

The full PCA decomposition of X is then given by T = XW, where W is a matrix of weights whose
columns are the eigenvectors associated to the [ biggest eigenvalues of the sample covariance matrix %X TX.
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4.2 Spectral analysis - MUSIC

Consider a complex time sequence

k
ytzz:oq-ei%f’t—i—wt, t=0,1,...,T—1
1=1

where Vi € [k], ay € C are complex coeflicients and f; € [0, 1) are the frequencies of the sinusoidal components.

Goal: Estimate{f;}}_; from {y:}/ "

This can be done by applying the Discrete Fourier Transform (DFT), but its resolution is limited by 4. To
achieve a super-resolution, a subspace-based approach is proposed.
Given a time window d > k, we define:

Yt Wy
Yt+1 Wt+1
vte[T—d: v,9=|"" |, w!¥= , and D = Diag(a, . .., ax)
Yt+d—1 Wt+d—1
For all [ € [k], denote z; = €27/t then given d > k

Yt 2 1 1 . 1 a2t

k t+1 t

Yt+1 Z 21 Z2 ot 2k (e DY

o | e ewe | T e
: =1 : :
Yt+d Zitd P RPN NS
Given an exponent p € N we introduce the Vandermonde matrix:
1 1 1
z1 z9 Zk
Vip) = .
R S P
Then one has the matricial identity ¥ = V(d)DV(*iL p) T+ W with:
yt e yt+T
Y=ty = :
Yt+d—1 *° Yt4+T+d-1
wt “e. wt-‘rT
d d
W= . owi )=
Wird—1  +°° Wt4T+d—1
Proposition 6.15. If the scalars z1, ...,z are all distinct from one another then the Vandermonde matrix

Vip) € My k, has a rank equal to min{p, k}.

Proof. To prove this, it’s sufficient to consider an I x [ submatrix of V() with | < min{d, k}:

1 1 1
z1 Z9 zZl
Vi= . € M,(C)
Zl—l Zé—l le—l
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Assume that we are given z € C! such that

l i—1
D1 TiZy

0= ‘/ET N :
l i—
Dim1 TiZ] !
This implies that the z1, ..., 2 are roots of a polynomial p(z) = 21 + 22+ - - +2;2'~! which has degree less
than k. It means that this polynomial is equal to zero and therefore x = 0 and the the matrix V} is injective
thus invertible. O

Denoting for simplicity Ty = T — d, one can define an analogous to the sample covariance matrix (but
here there is no independence between the columns) as:

1 . 1 . . * o?
RVZEYY::E(WMW@”+W)@@Dnnﬁw@ ~ @t oy (6.4)
Whekrekcr2 is the noise power, and ® = %dwd)DW?d)WTd)D*WZ) € My4(C) is a positive definite matrix of
rank k.

Let us introduce the eigenvalue decomposition R, = U*AU, with U unitary and A = Diag(Ai,...,Aq)
diagonal with positive entries in increasing order Ay < --- < A4. Since Rk(®) = k, one can estimate:

o? o2 o2 U
P~ UAU — —1I; = (U* UZ*)Di Ad— — A= = "
U*AU 7,14 (Up UZX)Diag| 0,...,0, \g—gt1 T, T, (Us)
n—k times
0'2 0'2
— U*Diag [ Mdgpor — = Ay — 2 UL,
s lag< d—k+1 Td, ) Td)

where we introduced the block decomposition U = (gz) with U, € Mgy_j,q and Us € My, 4. Of course, U
being unitary, U;U;; = 0 and therefore:

1 * * * * * * : 0-2 0-2 *
EUnV(d)DV(Td)V(Td)D ViU = Un®U,; = U,U;Diag <)\dk+1 T An — Td) UsU; =0.
That means, since DV(*Td)V(Td)D* € My (C) is of full rank, that:
k
* * * 2
0~ UpVig) ViU = > |1Una(f)II°,
1=1
where, Vi € [k], Vf € [0, 1), we introduced:
1
a(f) = : e e, with  z(f) = 2™/,
2(f)*
In order to pick suited frequencies f1,..., fx, one therefore needs to:

1. Choose appropriate k < d (no precise method to optimally choose k),

2. Introduce U,, € Mgk, & unitary matrix having as column an orthonormal basis of eigenvectors
associated to the n — k lowest eigenvalues of R,,

3. Pick k frequencies such that ||U,a(f)|| is the closest possible to zero.

This last step is solved looking at the maximum of the mapping depicted on Figure EI
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Figure 6.1: With this frequency selection graph, one is tempted to chose VI € [k], z; = 2™/t
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Lecture 7

QR decomposition and applications.

1 Result and implementation

1.1 Existence and uniqueness

Theorem 7.1. Let A € M, ,, be given.

1. If n > m, there is a Q € My, with orthonormal columns and an upper triangular R € M,, with
nonnegative main diagonal entries such that A = QR.

2. If rank A = m, then the factors Q and R in B are uniquely determined and the main diagonal entries
of R are all positive.

3. If m = n, then the factor Q in B s unitary.

4. There is a unitary Q € M, and an upper triangular R € M, ,, with nonnegative diagonal entries such
that A = QR.

5. If A is real, then the factors Q and R in B @ B . may be taken to be real.

Only the second item will be proven, the uniqueness part relies on the following well known lemma.

Lemma 7.2. The inverse of an invertible upper (resp. lower) triangular matriz is also upper (resp. lower)
triangular.

Proof. Let us consider R € M,,(C), upper triangular. Denoting D € M,,(C), the diagonal matrix having
the same diagonal entries as R, one can decompose R = (I,, + N)D where N € M,,(C) satisfies Vj < i,
N; ; = 0. One verifies easily that N is nilpotent, in particular N = 0. Let us then compute:

RD_l (In_N+N2—N3+...+(_1)n—1Nn—1)
:(In+N)(In_N+N2—N3++(_1)n—1Nn—1)
=1, +N-N+N2—-N24...4 N1 N1 N = ]

One can then conclude that D~ (I, — N +--- 4 (=1)""'N"7!) is the inverse of R, note that it is upper
triangular as a sum of a product of upper triangular matrices. O

Proof of Theorem , Item @ Let us note x1, ..., %, the columns of X, we know that those vectors form
a linearly independent family of C" since X is invertible. To show the existence of @, R, let us invoke the
Gram-Schmidt orthonormalizing process that ensures the existence of a orthonormal family q1, ..., ¢, inC™
such that for all k& € [m]:

xke{QIa"'7Qk}'
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In other words, for all k € [m], there exists k scalars aj g, . .., such that:

k
Th= Y ik (7.1)
=1

Introducing the unitary matrix @ = (q¢1, ..., qw) and the upper triangular matrix R € M., satistying for all
j<i, R;; =0and for all j > i, R; ; = ¢ j, ([I.1]) rewrites matricially X = QR. Then setting:

R;;
D = Di :
e (Ri,i|>ie[m]’

(R as A is invertible, therefore, Vi in[n], R;; # 0), Q' = QD™ ! and R’ = DR, the decomposition A = Q'R
satisfies the requirement of the decomposition.

Suppose that A = QR = QR in which R and R are upper triangular and have positive main diagonal
entries, and Q and Q have orthonormal columns. Then A*A = R*(Q*Q)R = R*IR = R*R and also
A*A = R*Q*QR = R*IR = R*R, so R*R = R*R and consequently R *R* = RR~!. Thanks to thanks
to Lemma Q@, we know that R~*R* is lower triangular and that RR~! is upper triangular. For a lower
triangular matrix to equal an upper triangular matrix, both must be diagonal: RR~! = D is diagonal, and it
must have positive main diagonal entries because the main diagonal entries of both Rand R~ ! are positive.
But D = D* = (RR™')* = R*R* = (R™*R*)~' = D!, thus D? = I,,, hence D = I,,,. We then conclude
that R = R and Q = Q.

O
There exist several method to compute the QR decomposition we will present three of them below.
1.2 Gram-Schmidt Procedure
Given A = [a1 a2 ... ay], for all k € [n], we want to estimate g and the scalars 1 i, 72, - . . , Tk 1 satisfying:
k
ay = Z QiTik = Q1T1k T @272,k + -+ -+ QrTh k
i=1

They can be computed iteratively through the following steps:

e For k=1, a; = g1r11 thus set:

a
= 1 and r11 = |aq |
a1l

e For k = 2, note that 12 = ¢jas and define:

_ ) ok
Y2 = ag — q17T12, G2 = Toal and To2 = (pa2

o For k' step, identity ap = Qi71k + ...+ @r—17k—1, already imposes the choice 7; = ¢ ax, then set:

k=1
_ _ Yk — *
Yr = ak — Zﬁ,kqi, 9 = 77 and Tkl = qrAk
2 el
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1.3 Vectorized Gram-Schmidt Procedure

Let us note 71, . .., ry,, the columns of RT, one has:
T
7"1 n
R=|: and therefore: A = E gt .
T i—1
rn

Note that for all £ € N:
k—1 n
i (4= Sart ) = Satart .
i=1 i=k

We then follow the iterative computations:

e For k=1:
_ T —  *
T ] - e
o For k" step:
k—1 y
k
Yk = (A - Zqﬁ?) €k, qr = Toel and = g A.
i=1

One can note with this iterative definition that of course:
n n
QR=) qr] =) qgfA=A
i=1 i=1
Moreover, given [ < k:

n 0 ifl<k
* * T
qyk:quT'@k:
! Py LR {r{ek ifl =k,

thus the family of n vectors ¢; = HZ%H’ e G = m is orthonormal by construction. Besides, for all k € [n],

if we denote Ay = Y"1, q;r], we see that g = Hﬁ:zZH and for all 4 € [k — 1]:

n n
=G A =g (> ar!) =4 (d_ar!) = ;A
=1 =1

Therefore for all i < k:
Rii=rie; = qidie; = qiAie; = ghg; = 0,
Thus the matrix R is upper triangular as expected.

Remark 7.3. In practice, because of computation errors, at a step k, q1,...,qx re not ideally orthogonal,
to reduce the errors on the computation of vy, it is then better to choose:

k—1
rkT =q; (A—Zqﬁ?) .
i=1
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1.4 Householder Transformation

Definition 7.1. A projection matriz is a matriv P € M, (C) such that P? = P. A reflection matriz is a
matriz of the form H = I,, — 2P where P € M,,(C) is a projection.

Lemma 7.4. A reflection matriz is an involution (it is its own inverse). If the associated projection is
Hermitian then it is unitary.

Proof. Simply note that for any projection P:
(I, —2P)> =1, —4P +4P? = I,.
Of course if P* = P, then H* = I, — 2P* = H = H~! and H is unitary. L]

Lemma 7.5. Given a vector x € C", different from e1, let us introduce ¢ € [0,2m) such that x*e; = e'®|x*e; |
and sets v = x — ||x||e"?e;. Denoting P = va* and H = I,, — 2P, H is a reflexion and Hx = e ||z||e;

Proof. Note first that P is a projector (and consequently that H is a reflexion):

1 * * 1 *
Yy € C": szzwvv ) yzwvv y = Py.

Besides, note that:
[l = [l2]|* = [lz]|e?eiz — [lzflePa*er + [|z]|* = 2]|2|* - 2/z"e: [||2]| = 20*z.

Thefore:

2uv*e
[[v][?

Hr=ux =z —v=|z]e %e;.

O

The reflexion H is called a Householder transformation of it is a hermitian reflexion (thus unitary see
Lemma [7.4) depicted on it is depicted on Figure in the case where x*eq is real. We will then inroduce for
all such z € C" H(z) = ¢'?H, it is still a unitary matrix but not a reflexion nor a hermitian matrix anymore.

T -
€2 A - -
- Hr= | ||e1
_ — : — |
,/'/ 61

Figure 7.1: reflection of a vector x on —||z|/ey
To construct the QR decomposition of a given matrix A one can thus proceeds followingly:
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e For k = 1, with the notations of Example @, let us introduce Hy = H(z1) where 1 is the first column
of A. We know that Hyz, = ||x1|le; and therefore:

Izl *

O M U el
ma=| =[50 4)

0 * *

with Ay € M,,_1

e For k =2, let us introduce

iz = {(1) H(ng)] :

where 25 € C*™1 is the first column of Ay € M,,_;. We have the identity:

O T I L
}¥2}{L4 ZZ{ ] [ = ngn k
0 H(Ig) 0 A2 (0) Ag

Once we finished this iterative procedure, one just has to introduce the unitary matrix Q = H,, --- HoH;
that satisfies R = QA is upper triangular, and therefore A = Q* R is the QR decomposition of A as described
by Theorem [7.1}.

2 Applications

2.1 Least square

Given A € M,,, y € C™, we want to find x € C" solution to

@ = argmin || Az — y||*.
rzeCn

Let us assume that A admits the QR decomposition:
Ry
A=QR=[Q1 Q- {0] =Q1

with Ry of full rank. One can then express:
2

40 -yl = 10" (4s — I = 1@"(@Rs ~ )I* = | [ 3] cQureiz —

2
Rix — QF * *
=H[ 12 Ply] — | Ruz — @iyl + |- Q3
in‘/

The problem therefore boils down to minimizing ||[Ryz — Qty|”>. The optimal vector 2 € C" cancels the
gradient and therefore satisfies:

Ri(Riz—Qjy) =0 < Riz=Qjy

When R € M, is upper triangular and b € C", the equation Rx = b solves easily thanks to successive

. . by—1—Rp_—1,n—1%,
substitution (z, = RZ’)", y Ty = MR"—I“‘“)
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2.2 Eigenvalue decomposition

The QR decomposition is widely used to compute eigenvalue decomposition of matrices. We provide below a
simple algorithm to get such a decomposition. The justifications of the success of such an algorithm are quite
elaborated, therefore we will not provide them in this lecture and simply mention that it rely on the same
mechanism that makes the power method converge to the eigenvector associated to the biggest eigenvalue
through successive iteration. Algorithm P will output a triangular matrix having the eigenvalues of A on the
diagonal and a unitary matrix V whose first column is the eigenvector associated to the biggest eigenvalue
of A. As such, this algorithm is a good alternative to the power method.

We provide below a lemma setting that the first output of the algorithm has the same eigenvalues as
the input (the convergence of the algorithm and the fact that this output is upper triangular is not justified
here).

Lemma 7.6. Given a full rank matriz A € M,,(C), and a sequence of scalars (zx)ren € CN, consider the
sequences of matrices (Ax)ren € My (C)N such that Ag = A and for all k > 1:

A = R 1Qp—1 — 211y,

where Qr, Ry are respectively the unitary and upper triangular matriz resulting from the QR decomposition
of Ag + ziI,. For all k € N, A and Ay are unitary similar

Proof. This result is merely proven iteratively thanks to the identity:

A = Ry 1Qr—1 — 21l = Q1 (Ak—1 + 2p-111)Qr—1 — 2eln = Q1 Ak—1Qr—1
= Qn_1Q% _2Ak—2Qk—2QK_1="=Q}_1 - QrAQo - - Qi—1,

and, of course, the matrix Qg - -- Qx_1 is unitary as a product of unitary matrices. O

Algorithm 2 QR method.
Consider an initial guess =,

error = 1

Ak = A

V=1,

while error > tol do
Aaux = Ak~

Draw e ~ N(0,1) +iN(0,1).

Qr, R := QR decomposition of Ay + l,,.

Ak = Rka - EIn.

V=VQ

error = ||Sort(Diag(Ax)) — Sort(Diag(Aaux))|l
Output A, V.

In the description of the algorithm the shift € is introduced to speed up the computations. In particular,
when dealing with real matrices with complex eigenvalues, it is necessary to allow the convergence to a
triangular matrix with complex diagonal entries as expected.

2.3 Canonical correlation analysis (CCA).

As PCA, CCA is used for dimension reduction but it takes as input two matrices instead of one. The main
goal is generally to see how similar are two sets of data and provides some orthogonal projection on which
this similarity can be revealed. Considering two data matrices A € M,, ,(C) and B € M,, .(C). We want
to find two low-rank approximations for A and B respectively that are close to each other.

We will see in next lecture a variational characterization of singular values (for non Hermitian matrices,
otherwise, one could use the Rayleigh-Ritz theorem):
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Given A € M,,, ,(C) the singular value decomposition can be defined with the following iteration:

*A *A
01(A) = max ly” Az = i Aoy VE>2: on(A) = = ,
zy [yl flua o] B lyllllzll — lluellllvell

ly*Az| _ JujAvg|

then A =>" | o (A)ugvy and o1(A) > 02(A) > ... > 0,(A) > 0 with p = Rk(A).
The CCA expresses in a similar way.

Definition 7.2 (Canonical correlation coefficient). Let A € M,, ,(C), B € M,, (C) and assume p =
rank(A) > rank(B) = q. The canonical correlation coefficients, o1(A, B),...,04(A, B) of the pair (A, B) are
recursively defined as

ly*B*Ax| _ |yi B* Az
o1(A, B) = max =
=z [|Byl[[[Az]| (| By ||| Az ]|

ly"B*Ax| _ |ypB" Awg|
Vke{2,...,q}: ox(A) = max =
Bodhs = %, By Al = TBulTAn]
yLlByq,...,Byjp_1
Then the normalized vectors 4Zs —BYe for k =1,... q are called canonical vectors.
lAzkll” [[Byxll

If p= g, then {Ax!,... Az?} and {By',..., By?} are orthonormal basis for Im(A) and Im(B) respec-
tively. One also has the following bound on the canonical coefficients:

Lemma 7.7. The canonical correlation coefficients of a pair of two matrices are always lower than 1.

Proof. In the setting of Definition @7 one can bound thanks to Cauchy-Shwarz inequality:

)= xS <
BylByi...Byp_i
O
Consider a QR decomposition of A and B:
A=QaR4 and B =(QpRp,

with Q4 € My, n, @B € My, semi-unitary and R4 € M,,, Rg € M, upper triangular invertible. Then:

D)= 5 T gynerion o T0a Rl [Gare
aria ey IBylllAzl - afas Gatan - Gatases IQeRevlIQaRaz]
5 Q5@ :
= max RS 0 (Q5Q)
eerize [ylle] ’
yLlyp,..., Yg—1

the kI singular value of Q%Q 4. Note that if Q4 = Qp then Q3Q4 = I, and all the canonical correlation
coefficients are equal to 1.

Noting that o(A,B) = y;B*Axj, with ||Az|| = ||Byk|| = 1 setting X = (21,...,2%) and ¥V =
(y1,--.,Yk), one has the equivalent formulations of the canonical correlation problem:

1. Find X € M, 4,Y € M,,, that maximize Tr(Y*B*AX), s.t. X*A*AX =Y*B*BY = I,
2. Find X € M,, 4, Y € M,, , that minimize ||BY — AX||p, s.t. X*A*AX =Y*B*BY =1I,.
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Lecture 8

Singular values decomposition and
applications

1 General results

Theorem 8.1 (Singular Value Decomposition). Let A € M, ,,(C) with n > m be given. Then there exist
unitary matrices V.€ My (C) and W € M, (C) such that A = VEW* with ¥ = [1(; 8] € Mym(R),
I’ = Diag(o1,...,0.), where 01 > 09 > ... > o, > 0 and r = Rk(A).

A decomposition of the form specified in Theorem @ is called a singular value decomposition (SVD) of
the matrix A. The diagonal entries of the matrix I" are called singular values and the columns of V' and W
are called left and right singular vectors of A.

Proof. If A =0, then we set V =1,,X =0 € M, ,,(C),I' = [I|,W = I,,,, and we are finished.
If A= 0 and r = Rk(A), since n > m, we have 1 <r < m, and since A*A € M,,(C) is Hermitian, there
exists a unitary matrix W = [wy, ..., wn] € My, (C) such that W*(A*A)W = Diag(A1, ..., Am) € My (R).
Without loss of generality, we assume that \y > Ao > ... > A, > 0. Given x € C", one has the
implications Ax = 0 = A*Az = 0 and A*Ax = 0 = |JAz| = 2*A*Az = 0 = Az =0,
thus Ker(A) = Ker(A*A) and consequently Rk(A) = Rk(A*A). Therefore, the matrix A*A has exactly
r positilve eigenvalues \1,..., A\, and m — r times the eigenvalue 0. Introducing the diagonal matrix I' =

Diag(AZ,..., /\é) € M, (R), let us further denote:

A= [F 0 } € M, (R) and X:(xl,...wm)EAWA_l € Mpm.
0 In—r ’
If one introduce the decomposition V = (z1,...,2,) and Z = (2,41, ...,Z,) than one can express:

{V Vv Z} _ [V ] [V Z]=XX* = AW ATAWA ! = {Ir 0] ,

/A VA AA z* 0 O
which implies in particular that Z = 0 and V*V = I,. Let us then complete (z1,...,7,) to create an
orthonormal basis of C": (z1,...,2r,Tr41,...,%n). Then the matrix U = (V, Z) € M,,(C) is unitary, with
Z = (Ty41y---5Tn) € My pn_r. One can then conclude:

A=[V 0] [g Iw?r] wr=[v Z] [g 8] W =UsSW*.

This lecture is a close copy of the book of Jérg Liesen and Volker Mehrmann: Linear Algebra
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Lemma 8.2. Suppose that the matriv A € My, 1, (C) with rank(A) = r has an SVD as specified in The-
orem with V.= [v1,...,0,] and W = [wy,...,wy]. We then have Im(A) = Span{vi,...,v.} and
Ker(A) = Span{wy41, ..., Wm}-

Proof. For j = 1,...,r, we have Aw; = VEW*w; = VEe; = ojv; # 0, since o; # 0. Hence, these

r linearly independent vectors satisfy vy,...,v,. € Im(A). Now r = Rk(A4) = dim(Im(A)) implies that
Im(A) = Span{vy,..., v }.

For j = r+1,...,m, we have Aw; = 0, and hence these m — r linearly independent vectors sat-
isfy wpq1,...,wy, € Ker(4). Then dim(Ker(A4)) = m — dim(Im(A)) = m — r implies that Ker(A) =
Span{wy41,...,Wwn}. O

We end this presentation of the general results with an adaptation of Courant Fischer Theorem to singular
values. The following result is given without proof since one simply has to apply Courant Fischer theorem
1
to the matrix (A*A)z

Theorem 8.3 (Courant—Fischer for SVD). Let A € M, ,,,, ¢ = min(n,m), we denote 0 < g1(A4) < --- <
o4(A), the g singular values of A. For any k € [q]:

o [[Az]|
THA) = R T &1

and 4
ox(A) = max min ” xH (8.2)

 dim S=m—k+12€S* |z

2 Applications

2.1 Low rank approximation

An SVD of the form A = }77_, ojvjw} can be written as a sum of r matrices of the form o;v;w?, where
Rk(ojvjwy) = 1. Let

k
Ap = Zojvjw; for some k,1 <k <. (8.3)
j=1
Then Rk(Aj) = k and, using that the matrix spectral normll (or matrix 2-norm) || - || is unitarily invariant,

we get
A= All = [V*(A = A)W| = |[Diag(ok+1, - ., o) || = Okpa
Hence A is approximated by the matrix Ay, where the rank of the approximating matrix and the approxi-

mation error in the spectral norm are explicitly known. The singular value decomposition furthermore yields
the best possible approximation of A by a matrix of rank k& with respect to the spectral norm.

Theorem 8.4 (Optimal Approximation by SVD). With Ay as in (@), we have ||A — Ag|| < ||A — BJ| for
every matriz B in M, ., (C) with Rk(B) = k.

Proof. The assertion is clear for kK = Rk(A), since then Ay = A and ||A — Ag|| = 0. Let kK < Rk(A) < m. Let
B € M, (C) with Rk(B) = k be given, then dim(Ker(B)) = m — k. If wy,...,w,, are the right singular
vectors of A from the SVD, then U := Span{ws,...,wky1} has dimension k + 1. Since Ker(B) and U are
subspaces of C™ with dim(Ker(B)) 4+ dim(U) = m + 1, we have Ker(B) N U # {0}.

Let v € Ker(B) NU with ||v]| = 1 be given. Then there exist a1, ..., ary1 in C with v = Zfill a;w; and

k+1
> i |aj[* = [[v]|* = 1. Hence

k+1
(A—B)v=Av—Bv = Zajajvj,

Jj=1

| Az]]
[E3]

WA € Mp,n, ||A]l = sup,ecny {0y
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and, therefore taking advantage of the fact that (v1,...,vg41) is an orthonormal family:

k+1 2 k+1
|A - B|?* = max |(4 - B)y|* > (A - B)v|* = Z%Uﬂy = lajo,?

k+1
2 ‘713-4-1 Z |O‘j‘2 = ‘713+1 = [|A = Axl?,
j=1

which completes the proof. O

2.2 Pseudo inverse

Another important application of the SVD arises in the solution of linear systems of equations. If A €
M,.m(C) has an SVD of the form as given in Theorem B.1|, we define the matrix At as follows:

r-to

Al = WEIV* € M,, ,(C), where X7 := { 0 0

] e R™".

0
0 0
side of the above equation is equal to the identity matrix I,,. In this case, we have AT = A~!. The matrix
AT can therefore be viewed as a generalized inverse, that in the case of an invertible matrix A is equal to the
inverse of A.

One easily sees that ATA =W [ } W* e M, (R). If r = m = n, then A is invertible and the right-hand

Definition 8.1. The matriz At in is called Moore-Penrose inverse or pseudo-inverse of A.

Let A € M,, ,»(C) and b € C™ be given. If the linear system of equations Az = b has no solution, then
we can try to find an & in C™ such that Az is “as close as possible” to b. Using the Moore-Penrose inverse
we obtain the best possible approximation with respect to the Euclidean norm.

Theorem 8.5. Let A be as given, with an SVD A =VEW™* as in Theorem @ and A" the Moore-Penrose
pseudo inverse defined in Definition @, then ||b — AATb|| < ||b— Ay| for all y € C™, and the norm of A'b
is given by

1/2

<lyll

r 2

1A% = >

j=1

*
g
J

for all y in C™ with ||b— AATH|| = ||b — Ay||.
Proof. Let y € C™ be given and introduce the scalars &1, ...,&, € C such that W*y = (&1,...,&y). Then:

16— Ay|? = [V(Vb = Z2)|I* = [[V*b - Bz = Z 05— 0€[* + Z o0 (8.4)
j=r+1
Now, noting that b= >"7"; (v;b)v; and AATb =V (L 0)V*b =37, (v}b)v;, one can also bound:
2

n
= D bl < b — Ay,
i=r+1

n

> (b

i=r+1

b — AATH|2 =

for any y € C™.
One deduce from (@) that every vector y € C™ that satisfies ||b — Ay|| = ||b — AATH|| must have the

form y = W(ﬂ, o %,yrﬂ, <oy Ym) for some y,11,...,ym € C. Recalling that ATo =>7_, vgb that

o1

implies that:

N v bl
Iyl = 1wy = Z + Z lil® = 1 A"0)* + Z lyil® > (| A"0]%.

l i=r4+1 i=r+1
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Lecture 9

Triangular factorizations and
canonical forms

If a linear system Ax = b has a nonsingular triangular coefficient matrix A € M,,, computation of the
unique solution z is remarkably easy. If, for example, A = (A;;)i,j € [n] is upper triangular and nonsingular,
then all A;; # 0 and one can employ back substitution: A,,z, = b, determines z,; Ap,_1p—12Tn-1 +
Ap—1nTp = by_1 then determines z,_1 since ,, is known and A, _1 ,,—1 # 0; proceeding in the same fashion
upward through successive rows of A, one determines x,,_o, T, _3,..., T2, 1.

If A € M, is not triangular, one can still use forward and back substitution to solve Az = b provided that
A is nonsingular and can be factored as A = LU, in which L is lower triangular and U is upper triangular:
(7) use forward substitution to solve Ly = b, and (i4) use back substitution to solve Uz = y.

Given A € M, an “LU factorization of A” is any decomposition A = LU, in which L € M, is lower
triangular and U € M,, is upper triangular.

Remark 9.1. Let A € M,, and suppose that A = LU is an LU factorization. For any block 2 x 2 partition

A Age Ly 0 U Un2
A= , L= d U= ,
[AQI AzJ [Lm L22:| a [ 0 U22]

with Ay, L11,U11 € My, and k < n, we have:

A =L1Uny
Ao = L11Uro (9.1)
Ao = Lo1Unny .

A1 = Lo1Uyo + Lo Uss.

In particular, note that each leading principal submatriz of A (A11 in this ezample) has an LU factorization
in which the factors are the corresponding leading submatrices of L and U.

Given A € M,, and i € [n], recall the notation Ay} = (Ar,1)r1e[) € M, the it" principal submatrix of A.
With these notations note that the matrices A;1, L1; and Uy; can respectively be noted A[k], Ly and Uy

Theorem 9.2. Let A € M,, be given. Then

1. A has an LU factorization in which L is nonsingular if and only if A has the row inclusion property:
For eachi=1,...,n—1, (Ait1,)je[ is a linear combination of the rows of Ay

2. A has an LU factorization in which U is nonsingular if and only if A has the column inclusion property:
For each j=1,...,n—1, (Aijt1)ic]j 15 a linear combination of the columns of Ay

This lecture is a close copy of the book of Roger A. Horn and Charles R. Johnson : Matrix Analysis
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Proof. If A = LU, then as explained in Remark @, Afi41) also admits a LU factorization, more precisely
Afis1) = Liig1)Upig1)- Thus, to verify the necessity of the row inclusion property, it suffices to take i = k =
n — 1 in the partitioned presentation given in Remark P.1l. Since L is nonsingular and triangular, L1 is also
nonsingular, and we have Ag; = LoyUyp = L21L1_11L11U11 = (L21L1_11)A11, which verifies the row inclusion
property.

Conversely, if A has the row inclusion property, we may construct inductively an LU factorization with
nonsingular L as follows. The cases n = 1,2 are easily verified. Given k in[n], we then introduce the block
decomposition Ay = (ﬁ; ﬁ;g) with Ay = Ap—1) € Mj—1, Agl,Alg € My_1,1 and Agp € M;. We further
assume that Ay; = L11U7; with Lq; nonsingular, and that the row vector Ag; is a linear combination of the
rows of Aj;. Then there is a vector y such that Ay = yT 411 = yTL11Ur1. Inspiring from the expressions
provided in (@), note that choosing Lo1 = yT L11 ensures As; = y7 L11U11 = Loy Upq, we beside may take
Uip = LfllAlg, Loo =1, and Uy = Ags — Lo Ups to obtain an LU factorization:

A — A Az| 1L 0 U Uie
[k] Ay Ag Lo1 Lo 0 Ui’

in which L = (f; 122) is non singular (since Li; is non singular and Lss # 0. One can then follow this
procedure until k£ = n. O

Corollary 9.3. (LDU factorization). Let A = [a;;] € M, be an invertible matriz. The matriz A has an LU
factorization A = LU if and only if Ay is nonsingular for alli=1,... ,n.

Proof. 1. One may simply note that if all the principal submatrices are invertible then their columns or
rows span the entire space. More precisely, given k € [n], any column of (A;;)ick),jem) (resp. any
row of (A; j)ie[n],jer)) is a linear combination of the columns (resp. of the row) of Ap,;. Conversely,
since A is non singular, A = LU implies that L and U are non singular. Since U and L are triangular,
that implies in particular that L) and Up) are non singular for all k € [n] and consequently that
A = LigyUp) is non singular.

2. skipped.

Example 9.4. Not every matrixz has an LU factorization. If

0 1
=i
. _ ol 0] juir wie PP . _ _
could be written as A = LU = , then ly1u11 = 0 implies that either 117 = 0 or l;; = 0.
log log 0 U22

In the former case, that would imply that 1 = l11u12 = 0 and the latter case would imply that 1 = lsyuy; =0
which is also absurd.

Lemma 9.5. Let A € M,, be nonsingular. Then there is a permutation matriz P such that A can be factored
as A= PLU with L and U being lower and upper triangular matrices, respectively.

Proof. The proof is by induction on n. If n = 1 or 2, the result is clear by inspection. Assume the result
holds for n — 1. Consider a nonsingular matrix A € M,,. We know that the (n — 1) first columns are linearly
independent, therefore there exist n — 1 linearly independent rows of (A; ;)icn),jem—1) that can be put in
first position through a permutation R. Then noting B = RA, we know that Bp,_1j is non singular and
the induction hypothesis allows us to introduce a permutation matrix @ € M,y_1 such that B, 1) = QLU
with L’ lower triangular and U’ upper triangular. We know from Theorem that leBn,l satisfies the

inclusion row property. Then by construction, setting, Q@ = (Q(; ! (1’), we deduce that QB also satisfies the

inclusion row property and that there exists L lower triangular and U upper triangular such that QB = LU,
setting P = R~'Q " allows to conclude the proof. O

In the case where the initial matrix is Hermitian positive semidefinite, then the LU decomposition can
be improved to a so-called “Cholesky decomposition” where U = L*, the existence and uniqueness of L are
simply deduced from the existence and uniqueness of a square root of A.
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Is A square?
!

No l lYes

Use QR solver Is A triangular?
!

Yes l l No

Use triangular  Is Size(A) < 16 x 167 (real)
solver or 8 x 8(complex)

No l—‘—l Yes

Is A upper Use LU solver

Hessenberg?
Yesl | lNO
Is A Tridiagonal Is A permuted
No I Yes triangular
l l Yes ' No
Use Hessenberg  Use Tridiagonal l l
solver solver Use permuted Is A Hermitian
solver
Nol ! lYes

Use LU solver  Does Cholesky
succeeds?
|

Yes l l No

Use Cholesky solver  Use LU solver

Figure 9.1: Chart taken from https://www.mathworks.com//help//matlab/ref/mldivide.html present-
ing the decision tree of the algorithm chosen to solve the system Ax = B when A and B are full (i.e. not
sparse).

Proposition 9.6 (Cholesky factorization). Let A € M,, be Hermitian. Then A is positive semidefinite
(respectively, positive definite) if and only if there is a lower triangular matriz L € M, with nonnegative
(respectively, positive) diagonal entries such that A = LL*. If A is positive definite, L is unique. If A is
real, L may be taken to be real.

Proof. Let A2 = QR be a QR factorization and let L = R*. Then A = AY2AY2 = R*Q*QR = R*R =
LL*.

In the case where A is PD, if there exists M lower triangular such that A = M M* then M ~'L = M ~*L~*.
Being both upper and lower triangular, M ~'L and M ~*L~* are both equal to a diagonal matrix D. Knowing
that all the term on the diagonal are positive real number, the identity writes more simply D = M 'L =
ML~ which implies L = M D = DLD, which can only be possible if D = I,, since the diagonal terms of L
are strictly positive. Finally, one has the identity M = L which proves the uniqueness O

The LU decomposition, together with the QR _decomposition can be more or less interesting depending
on the matrix considered. We display on Figure the choices made by Matlab to find the solution z to the
equation Az = B. Similar chart exists to compute the eigen values of a matrix (as for the QR method and
in a similar way, the LU decomposition can be used to compute the eigenvalue decomposition of a matrix).
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Lecture 10

Kronecker product and Tensors

1 General results on Kronecker product

To give some motivation for the introduction of the Kronecker product, let us give us as objective to
solve the matrix equation:

A1XBy + Ay X By = C

where the matrices A; Ay, By, Bo, C are given and X is unknown. In the description of the solutions of
such equations, the Kronecker product, another product of matrices, is useful. In this chapter we develop
the most important properties of this product and we study its application in the context of linear matrix
equations. Note that the Kronecker product could be seen as a tensor product represented in a particular
basis.

Definition 10.1 (Kronecker Product). Given A = [A;;] € M,, and B € M,,, the Kronecker product of A
and B is defined as:
AllB M AlmB

A@B:=[A;B] = | PR
ApiB - ApmB
and is called the Kronecker product of A and B.

Note that this product is non commutative.
Lemma 10.1. Given A e M,,, B€ M,,, C €¢ M, and u € C the following computational rules hold:

1. A (Be(C)=(A®B)®C.

2. (MA)® B=A® (uB).

3. (A+B)®@C=(A®C)+ (B®C), whenever A+ B is defined.

4. A® (B+C)=(A® B)+ (A® (), whenever B + C' is defined.

5. (A® B)T = AT @ BT, and therefore the Kronecker product of two symmetric matrices is symmetric.

Note in particular that unike classical product the order of the matrices in the Kronecker product is not
inverted through transposition.

Lemma 10.2 (Multiplication of Kronecker Products). For A,C € M,,, and B,D € M,, we have
(A® B)(C ® D) = (AC) ® (BD).

Hence, in particular:

The two first sections of this lecture is a close copy of the book of Jorg Liesen and Volker Mehrmann: Linear Algebra
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1. A B=(A®1,)(I, ® B) = (I, ® B)(A® I,,),
2. (A B)"' = A"1® B™Y, if A and B are invertible.
Proof. Since A ® B = [A;;B] and C ® D = [C;; D], the block matrix [F;;] = (A ® B)(C ® D) is given by
Fij =Y (AiB)(Cr;jD) = AyCy;BD = (Z Aikckj> BD.
k=1 k=1 k=1

For the block matrix [G;;] = (AC) ® (BD) with G;; € M,,, we obtain

Gij = ]{i_jBl)7 where Hij = Z A,-kij,
k=1

which shows (A ® B)(C ® D) = (AC) ® (BD).
Ttems 1. and 2. easily follow from this equation. O

Corollary 10.3. Given A,P € M,, and B,Q € M,, where P and Q are invertible:
(PoQ)"(A®B)(P®Q) = (PT'AP)® (Q”'BQ)

Lemma 10.4 (Non-Commutativity). In general, the Kronecker product is non-commutative, but for A € M,
and B € M,, there exists a permutation matrizc P € My, mn such that

A®B=P' (B A)P.

Proof. Given an integer p € N, we note p'™ the rest in the euclidean division of p with n and p((]”) the

quotient (p = npg") + psﬂ")). To simplify the proof, we will now start the indexing of columns and rows of

matrices from 0 (A = (4 ;)i jefo,...m—1} and B = (B ;)i jefo.,...n—-1}). Given i,j € {0,...,nm}:
[A X B]iyj = Aign)7jén)Bi§.ﬂ,),j”(~n) and [B ® A}i’j = Aislm)ﬁjT('m)Bigm),jém), (10.1)
Naturally, we introduce the permutation 7 € &,,, such that Vp € [nm]
7(p) = np{™ +p{™.

The inequality p < nm implies p,(zm) < n, the uniqueness of the euclidean division rest and quotient then

allows us to deduce that:

pm™ = m(p){™ and pi™ = m(p)!

Therefore, () allows us to set that:

[A® Blij = [B® Alni)n() = [PT(B@ AP, |
where P € M,,,,, is the permutation matrixEI defined as P = (0; x(j))i,jc[nm]- O
Theorem 10.5 (Properties of the Kronecker Product). For A € M,, and B € M,, the following rules hold:
1. det(A® B) = (det A)"(det B)™ = det(B ® A).
2. T(A® B) = Tr(A)Tr(B) = Tr(B® A).

3. R(A® B) = R(A)RK(B) = RK(B ® A).

1Classically, §; j = 1ifi=jand &, ;, =0 if i # j
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Proof. 1. From 1. in Lemma and the multiplication theorem for determinants we get
det(A® B) = det((A® I,,)(I,, ® B)) = det(A ® I,,) det(I,, ® B).

It is straight forward ot see from the block diagonal matrix determinant formula that det(l,, ® B) =
det(B)™. By Lemma , there exists a permutation matrix P with A ® I,, = P(I, ® A)PT. This
implies that

det(A® I,,) = det(P(I, ® A)PT) = det(I,, ® A) = (det A)".

It then follows that det(A ® B) = (det A)"(det B)™, and therefore also det(A ® B) = det(B® A).
2. From A ® B = [A,; B] we obtain

A®B ZZA”BJ] (Z ”> En:BJJ = TI‘(A)TI’(B)
j=1

=1 j=1 i=1
=Tr(B)Tr(A) = Tr(B® A).

3. We know from Schur Theorem that there exists some matrices P,T € M,, and Q,U € M,, such that
P, @Q are both invertible, T, U both upper triangular and:

A=pP TP and B=Q'UQ.

The rank of A and B are respectively the number of zeros on the diagonal of T and U. Corollary
allows us to express:

Rk(A® B) = Rk (P® Q)" (A® B)(P®Q)) = RK(T ® U) = Rk(A)Rk(B),

thanks to a simple account of the number of zeros on the diagonal.

2 Resolution of linear matrix equations

For a matrix A = [a1,...,a,] € My, ,, with columns a; € C™, j =1,...,n, we define
ai
a2
Vec(4) := | . | eC™™.
Qan

The application of “vec” turns the matrix A into a “column vector” and thus “vectorizes” A.
Theorem 10.6 (Vectorization and Kronecker Product). For A € M,,,, B € M,,, and C € M, ,, we have
Vec(ACB) = (BT @ A) Vec(C).

Hence, in particular,
1. Vec(AC) = (I, ® A) Vee(C) and Vee(CB) = (BT @ I,,,) Vec(C),
2. Vec(AC + CB) = ((I, ® A) + (BT @ I,,)) Vec(C).

Proof. For j =1,...,n, the jth column of ACB is given by

(ACB)e; = (AC)(Be;) ZBM AC)er, = > (BijA)(Cey)
k=1

= [BUA7 B2jA7 e 7anA] Vec(C),

which implies that Vec(ACB) = (BT @ A)Vec(C). With B = I,, respectively A = I,,, we obtain 1., while 1.
and the linearity of vec yield 2.. O
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In order to study the relationship between the eigenvalues of the matrices A, B and those of the Kronecker
product A ® B, we use bivariate polynomials, i.e., polynomials in two variables. If

l

p(t17t2) = Z Olijtzité S C[tl,tQ]
i,7=0

is such a polynomial, then for A € M,,, and B € M,, we define the matrix

l
p(A, B) = Z Oéiin & Bj.

i,j=0
Here we have to be careful with the order of the factors, since in general A' @ B # BJ @ A'.

Theorem 10.7 (Stephanos). Let A € M,, and B € M,, be two matrices that have Jordan canonical forms
and the eigenvalues \1,...,Am € C and p1, ..., un € C, respectively. The following assertions hold:

1. The eigenvalues of p(A, B) are p(Ag, ) fork=1,....m and L =1,... n.
2. The eigenvalues of AQ B are A, - g fork=1,... mand=1,... ,n.
3. The eigenvalues of AQ I, + 1, @B are \py + g fork=1,... mand£=1,...,n.

Proof. Let S € M,,,(C) and T' € M,,(C) be invertible such that S~'AS = J4 and T™'BT = Jp are in
Jordan canonical form. The matrices J4 and Jp are upper triangular. Thus, for all 4, j the matrices J4 ® J%
and Ji{ @ Jé are upper triangular. The eigenvalues of J4 and Jg are Ay,..., A\, and pq, ..., iy, respectively.
Thus, p(Ak, te) kefm),eccn), are the diagonal entries of the matrix p(Ja, Jp). Using Corollary m we obtain

l
@i (STaS™) @ (TIsT ™'Y = Y ay(ST4S™) @ (TJET )
0 i,j=0

p(A,B) =

M-

3V

~

=Y 0(SeT)(Jh® JE)(SeT)™ = (S@T)p(Ja, Jp)(S®T)™
0

<.

)

which implies 1. The assertions 2. and 3. follow from 1. with p(t1,t2) = t1te and p(t1,t2) = t1 + to,
respectively. O

Lemma 10.8 (Matrix Exponential of a Kronecker Product). For A € M,,, B € M,, and C := (A®I,)+
(I, ® B) we have
exp(C) = exp(A) ® exp(B).

Proof. From Lemma , Item 1., we know that the matrices A ® I,, and I,,, ® B commute. With classical
operation on exponentials:

exp(C) =exp(A® I, + I, ® B)
=exp(A® I,) exp(I, ® B)

(Z %(A ® 1)’ <Z %(Im ® B)")

@

I
M8
M8
2|
=
®
=
=
®
x

where we have used the properties of the matrix exponential series. O
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The following result on the matrix exponential function of a Kronecker product is helpful in applications
that involve systems of linear differential equations. For given matrices A; € M,,, B; € M,, j =1,...,q,
and C € M, ,, an equation of the form

A XBy + Ay XBy+ ...+ A XB, = C (10.2)
is called a linear matrix equation for the unknown matrix X € M,, ,.

Theorem 10.9. A matriz X € M. solves () if and only if Vec(X') € M1 solves the linear system
of equations

q
G Vee(X) = Vee(C), where G := ZBJT ® Aj.
j=1

Proof. Simple application of Theorem . O
We now consider two special cases of ()

Theorem 10.10 (Sylvester Equation). For A € M,,, B € M, and C € My, ., the Sylvester equation
AX+XB=C

has a unique solution if and only if A and —B have no common eigenvalue.

Proof. Analogous to the representation in Theorem , we can write the Sylvester equation as
(I, ® A+ BT @ I,,)Vec(X) = Vec(C),

then Theorem allows us to set that the set of eigenvalues of I,, ® A + BT ® I, is exactly {\ + p, A €
Sp(A), 1 € Sp(B)} which does not contains 0 if and only if A and —B do not have common eigenvalue. [

Corollary 10.11. For A,C € M,, the Lyapunov equation
AX + XA*=C

has a unique solution X e ¢ if the eigenvalues of A have negative real parts. If, furthermore, C is
Hermitian, then also X is Hermitian.

Proof. Since by assumption A and —A* have no common eigenvalues, the unique solvability follows from
Theorem . Note besides that if C' is Hermitian, then:

AX* + X*A* =C* =C,

in other words, X* is also solution, which implies, by uniqueness of the solution that X* =X (X is
Hermitian). O

Equations provided in Theorem and Corollary are quite important in the field of control
theory (that deals with the control of dynamical systems in engineered processes and machines), therefore
some powerful method are required to compute the solution. A standard solution is to employ the Bartels—
Stewart algorithm that relies on the triangulation provided by the Schur decomposition. We simply describe
below the procedure to compute solution to:

AX + XA =C.

Following the result of Theorem , we assume A and —A* do not have common eigenvalues so that the
equation admits a unique solution.

1. Compute the Schur decomposition R = U*AU where the matrix R is upper triangular and U is
Hermitian.
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2. Set F' = UTCV, one then has to solve the simplified system RY + YR* = F

3. Consider the block decomposition F' = (%1 5;2 ),Y = (})%i Qz ), R= (R(}l g;i ), where Fay, Yas, Rog € C

(then Fi1,Y11, R11 € M,,—1), one then has to solve the system of equations:

Fi1 = Ri1Y1 + Y11 Ry, + RioYor + Y12 Ry
Fio = R11Y12 + Ri2Yas + Y12 R,

Fy1 = RooYo1 + Y1 RY) + Yo RY

Fay = Ro3Yas + Yoo IR5,.

4. The last equation imposes Yoo = #"‘QR;Z (Ra2 + R, # 0 since Ras is an eigenvalue of A that should

therefore satisfy —R3, # Ra2), then Y21 and Yis are solved with the equations:
Y21(R22In—1 - Rfl) = Fy — Y22RT2 and (Ru + RZQIn—l)le = Fio — Y22 Ry,

which is easy to solve by iterative substitution since R11 + R551,—1 is triangular. Note that Rool,—1 +
R7, is invertible because by hypothesis on A, Ras is not an eigenvalue of —A*, thus of R7;.

5. Employ the previous procedure (starting with a decomposition in n — 1,1 block matrices) to the
equation R11Y11 + Y11 Ry, = Fi1 — R12Y21 — Y12 R}, and proceed until one gets a block decomposition
1,1.

3 Tensors
Tensor is a multi-way array. An N-way tensor 7 € Cl1x[2>X=XIN can express:

T = (ﬂl,i'z,m,iN)i1€[11],4..,iN€[1N]'
(in particular matrices are 2-way tensors). We will focus on 3-way tensor.

Definition 10.2. (Outer product) Given a € C! and b € C’, we denote aeb = ab”. Given a supplementary
ceCk:

aebec=(abjck)icr jeskek-

One of the big issues in tensor theory is to represent a tensor X as a following sum:

R
X = Z(ar ob. e Cr)a (10.3)
r=1
where R € N. There exist multiple definitions of the rank, we provide below the most common one that
relies on the above decomposition.

Definition 10.3 (Tensor rank). Given a tensor T € Cl*12XXIN " the minimal integer R € N such that
there exists RN vectors:

agl),...,ag)e(ch7 a:(LQ),...,ag)ECI?, ceey agj\[),...,a%\[)G(CIN7
such that T = Zf;l a,(}) o--- 0 agN).
Then we say that T is a sum of R tensor of rank 1.
Proof of the existence and uniqueness of the rank. Giveniy € [I1],...,in € [In], let us introduce the tensor:

. = I In I x--xIn
T e, e oe N € C ,
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where for all ¢ € [N], eilj is the i, vector of the canonical basis of C¢. Note that E;, ... iy is full of zeros
with just an entry equal to one at the index (i, ...,in). The tensors (E;, .. ix)ie[n],....inc[lx] form a basis

of CIv>*In and for any T € C1 ¥ >IN we have:
T — T B - T. olig . eV
- 1520 N 215 3IN T lh-uﬂNeil eiN’

i1€[I1],...,in E[IN] i1€[I1],...,inE€[IN]

which implies that the rank is well defined as the minimum of a non empty set bounded below by 0. Note
in passing that we have just shown that the rank of a tensor of C/****I~ is always lower that Iy --- In. [

Decomposition () can be schematically represented this way:

C1 Co C3 Cr
o = = = =
7 | ) | ) — ————
b by b3 b,
I = |lq + |, 1] g +t |

This decomposition is not unique and it is also known as “tensor rank decomposition”, “Canonical Polyadic
decomposition” (CPD) or “Parallel factor analysis”
The tensor decomposition problem formulates:

2
R
Minimize: HX — Z a-eb.ec.| (10.4)
r=1 F
where [a1,as,...,ar] € CI*E [by,by,... ,br] € C'*E [c1,ca,...,cr] €€ CEXE,

This problem can be rewritten with so-called “slabs” which can be defined through 3 directions (for
tensors of degree 3) and are simply obtained by fixing one index of a given axis. We depict below the slabs
of all directions:

(2)
k x5’

J
xM

Horizontal slabs

x®

Lateral Slabs Frontal slabs

given a decomposition X = Zf‘:l(ar e b, e c,), note that:

R R R R
Xi(l) = ZaiT(br oc,) = Za”brcz XJ@) = ijrarch X,gg) = ch,«arbz.
r=1 r=1 r=1 r=1

The problem can then rewrite:

I R 2
Minimize: Z Xi(l) — Z Arvibrczﬂ ,
i=1 r=1 F
where we employed the notation A = (a1, ...,ar) = (Air)ie[r),re[R)-
Note with a vectorization that given ¢ € [I]:
R Qi1
Vee(X{) =3 a4y, Vee(b,cl) = (Vee(biel), ..., Vec(breR)) | | = (C o B)as,

r=1 =(C®B)ERIKXR Qi R
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where the notation “C' ® B” designates the Khatri-Rao product product. Note that for any vector a € R’
and b € R7, Vec(ab”) = b® a so the Khatri-Rao product of two matrices A € R/*® and B € R7*% can also
be expressed followingly:

AOB=(a1®by,...,ar ®bg).
Note also that @; is actually the i*® column of A”. Thus, if one introduces the matrix:
xM = (Vec(Xl(l))7 . ,Vec(X}l))) ,
one has the identity:
xW = (co B)AT
The same way, with similar notations, one can show that:
x® = (o A)BT and x® = (Bo A)CT.

The problem (), is then generally solved by the so-called “Alternating Least Squares (ALS) Algo-
rithm”. The idea is to fix all factor matrices except for one in order to optimize for the non-fixed matrix with
a classical least square algorithm and then repeat this step for every matrix repeatedly until some stopping
criterion is satisfied. More precisely, for 3-way tensor case one needs to follow the following steps repeatedly
until convergence:

A arg miny |x — (C © B)AT||
B + arg ming||X® — (C ® A)BT||
C + arg min,||X® — (B o A)CT||
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